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How to describe the problems in arbitrary dimensions?
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Model: world spaces

projective affine metric

wX  fard Vel

(P", AutP") (R, AffR")  (R",SimR")

e P": projective space over R

@ R” =P"\ H: Euclidean space as a set

o AutP" ~ PGL(n+1)

o AffR"={g € AutP" | g- H C H} ~ GL(n) x R"

o SMR"={g e AffR" | g- Q C Q} ~R*O(n) x R"

H € |Op(1)| — hyperplane at infinity
smooth definite Q € |Oy(2)] — absolute quadric




Model: cameras

s: R™! — R™L: a surjective linear map (n > m)

I, € R™*1L: line corresponding to x € P™

5:P" - P7 — camera projection
P(kers) cP"  — (dim:n—m—1)
P(s7%(k)) C P" — back-projected plane (dim : n — m)

Example (Pinhole camera model)
H={w=0}>Q={v+v?*=0}

~ o u ul _ |u/v 1
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S: realistic & n=3and m=2



Additional information for reconstruction

5:P"--»P™ (j =1,...,r): camera projections
@ point correspondences
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o= (5,...,5): P"-—» [[,P™
o(u) = (51(u),...,5(u)) stands for a correspondence.

@ camera motions

@ prior knowledge of the scene



Multiview varieties

X, =@ (P") — multiview variety
(moduli space of point correspondences)

o (P") =@ (P\ Z) C J[,P™: the image of ¢
Z: the union of focal loci Z3,...,Z,



Multiview varieties

X, =@ (P") — multiview variety
(moduli space of point correspondences)

o (P") =@ (P\ Z) C J[,P™: the image of ¢
Z: the union of focal loci Z3,...,Z,

@ How to describe X7

e Can we recover ¢ (up to AutP") from X, C [[,P™?7?




Description 1: via back-projected planes

Each x = (x1,...,x;) € [[;P™ corresponds to an r-tuple of

back-projected planes (Pi, ..., P,), where P; = 57(x;).

Description 1

Assume ¢ is generic.
Xo = {x e [, P™

ﬂi'Di?éQ}-

Plotting ¢~ !: X, --» P is refered to as triangulation:
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Description 2: via Grassmann tensors

Assume ¢ is generic, and |m| = )" .m; > n.
Write s = (s1,...,5.): V. — @, W..
Fix @« € Z" such that 1 < o; < mjand ) .c; =n+1.

pr,: A" bW~ D, <®, /\Bi W,) - & \" W,




Moduli spaces for |m| > n

ILE(V @ W)
//PGL(V)E
\V
Cam = Gr(n+1,@, W,) /G, --"-- Hilb ([, P(W}))

Plﬂcker\[ T T

P(A™ @, W) [ G, =5z P, A\ W)

Cam moduli space of camera projections
X =~ (Cam)  —"— of multiview varieties
A, = 7, (Cam) —"— of Grassmann tensors of profile «

Examples for realistic cameras:
Az, A211, A1111: the epipolar, trifocal, quadrifocal varieties



Projective reconstruction theorem

m=(my,....m), a=(a,...,qa,)
Assume ¢ is generic, and |m| > n.
o (Hertley—Schaffalitzky '09)

If m # (1"1), m,: Cam --» A, is generically injective.

If m = (1Y), 7, is generically 2 : 1.

o (Aholt-Sturmfels—Thomas '13, lto-M-Ueda '17+)
If m # (1"*1), v: Cam --» X is generically injective.
If m = (1™*1), v is generically 2 : 1.
If |/m| >2n—1, X is an irreducible component of Hilb [, P™.




Projective reconstruction for m # (1"1)

Assume ¢ is generic, and |m| > n.
M, = (id XQO)(P") C P" x [[,P™: the graph of ¢

L1 = *pri Opm (1)

/ \ E =p (&)

_______________ » X, Di= q(E1) = P™ x something

e Sing X, = {dim (), P; > 1}: singular locus
@ X, is normal and g is small.

o If m = (11, Dy is uniquely determined only from X,,.

Theorem (Ito-M-Ueda '17+)

ot X, --» P" is given by |O(D1) ® L]




Projective reconstruction for m = (1"1)

s': (@, W,/s(V)) — €D, W;* gives the dual reconstruction.

Theorem (Ito-M-Ueda '17+)

o toy € BirP" is given by |O(n) ® Iz,u.-0z,.4]-
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Affine reconstruction theorem

H € Opn(1): hyperplane at infinity

T(H) ={g € Aut(P") | g =id or (P")® = H} ~R"
— the group of pure translations on (R" = P"\ H, Aff R")

51, 5: related by a G-motion < P™ =P™ and 5, € 5G
A C P™ x P™: the diagonal set

Theorem (Ito-M-Ueda, in preparation)

¢ =(5,5): P" --» P" x P™: related by a T(H)-motion

Assume X, ¢ A, then H is uniquely reconstructed from .

The affine structure is compatible with the factoring,
P(V)" —=» P (V/(ker sy Nker )™ —=» P(W)™ x P(W)™.



Summary

@ Two formulations for projective reconstruction are
obtained for a generic ¢ and |m| > n.

@ Affine reconstruction is described by some degenerate ¢
and |m| < n in general.

Future topics:
@ Degenerate configurations

@ Metric reconstruction problems
(the difference between R and C may give difficulty.)

rotating cube in R*



