Multiview varieties and reconstruction problems

Makoto Miura
joint work with Atsushi Ito and Kazushi Ueda

Korea Institute for Advanced Study
October 6, 2018

Reconstruction problems in computer vision

$2 / 14$

Reconstruction problems in computer vision

How to describe the problems in arbitrary dimensions?

Model: world spaces

$\left(\mathbb{P}^{n}\right.$, Aut $\left.\mathbb{P}^{n}\right) \quad\left(\mathbb{R}^{n}, \operatorname{Aff} \mathbb{R}^{n}\right) \quad\left(\mathbb{R}^{n}, \operatorname{Sim} \mathbb{R}^{n}\right)$

- \mathbb{P}^{n} : projective space over \mathbb{R}
- $\mathbb{R}^{n}=\mathbb{P}^{n} \backslash H$: Euclidean space as a set
- Aut $\mathbb{P}^{n} \simeq P G L(n+1)$
- Aff $\mathbb{R}^{n}=\left\{g \in \operatorname{Aut} \mathbb{P}^{n} \mid g \cdot H \subset H\right\} \simeq G L(n) \ltimes \mathbb{R}^{n}$
- $\operatorname{Sim} \mathbb{R}^{n}=\left\{g \in \operatorname{Aff} \mathbb{R}^{n} \mid g \cdot Q \subset Q\right\} \simeq \mathbb{R}^{\times} O(n) \ltimes \mathbb{R}^{n}$
$H \in\left|\mathcal{O}_{\mathbb{P}^{n}}(1)\right| \quad$ - hyperplane at infinity
smooth definite $Q \in\left|\mathcal{O}_{H}(2)\right|$ - absolute quadric

Model: cameras

$s: \mathbb{R}^{n+1} \rightarrow \mathbb{R}^{m+1}:$ a surjective linear map $(n>m)$
$I_{x} \subset \mathbb{R}^{m+1}$: line corresponding to $x \in \mathbb{P}^{m}$

$$
\begin{array}{ll}
\bar{s}: \mathbb{P}^{n} \rightarrow \mathbb{P}^{m} & \text { - camera projection } \\
\mathbb{P}(\operatorname{ker} s) \subset \mathbb{P}^{n} & \text { - focal locus }(\operatorname{dim}: n-m-1) \\
\mathbb{P}\left(s^{-1}\left(I_{x}\right)\right) \subset \mathbb{P}^{n} & \text { - back-projected plane }(\operatorname{dim}: n-m)
\end{array}
$$

Example (Pinhole camera model)

$$
\begin{aligned}
& H=\{w=0\} \supset Q=\left\{u^{2}+v^{2}=0\right\} \\
& \bar{s}: \mathbb{P}^{2} \ni\left[\begin{array}{l}
u \\
v \\
1
\end{array}\right] \mapsto\left[\begin{array}{l}
u \\
v
\end{array}\right] \equiv\left[\begin{array}{c}
u / v \\
1
\end{array}\right] \in \mathbb{P}^{1}
\end{aligned}
$$

\bar{s} : realistic $\Leftrightarrow n=3$ and $m=2$

Additional information for reconstruction

$\bar{s}_{i}: \mathbb{P}^{n} \rightarrow \mathbb{P}^{m_{i}}(i=1, \ldots, r)$: camera projections

- point correspondences

$$
\begin{aligned}
& \varphi:=\left(\bar{s}_{1}, \ldots, \bar{s}_{r}\right): \mathbb{P}^{n} \rightarrow \prod_{i} \mathbb{P}^{m_{i}} \\
& \varphi(u)=\left(\bar{s}_{1}(u), \ldots, \bar{s}_{r}(u)\right) \text { stands for a correspondence. }
\end{aligned}
$$

- camera motions
- prior knowledge of the scene

Multiview varieties

$$
\begin{aligned}
X_{\varphi}=\varphi\left(\mathbb{P}^{n}\right) \quad- & \text { multiview variety } \\
& \quad(\text { moduli space of point correspondences) }
\end{aligned}
$$

$\varphi\left(\mathbb{P}^{n}\right):=\overline{\varphi\left(\mathbb{P}^{n} \backslash Z\right)} \subset \prod_{i} \mathbb{P}^{m_{i}}$: the image of φ
Z : the union of focal loci Z_{1}, \ldots, Z_{r}

Multiview varieties

$$
X_{\varphi}=\varphi\left(\mathbb{P}^{n}\right) \quad-\text { multiview variety }
$$

(moduli space of point correspondences)
$\varphi\left(\mathbb{P}^{n}\right):=\overline{\varphi\left(\mathbb{P}^{n} \backslash Z\right)} \subset \prod_{i} \mathbb{P}^{m_{i}}$: the image of φ
Z : the union of focal loci Z_{1}, \ldots, Z_{r}

Questions

- How to describe X_{φ} ?
- Can we recover φ (up to Aut \mathbb{P}^{n}) from $X_{\varphi} \subset \prod_{i} \mathbb{P}^{m_{i}}$?

Description 1: via back-projected planes

Each $x=\left(x_{1}, \ldots, x_{r}\right) \in \prod_{i} \mathbb{P}^{m_{i}}$ corresponds to an r-tuple of back-projected planes $\left(P_{1}, \ldots, P_{r}\right)$, where $P_{i}=\bar{s}_{i}^{-1}\left(x_{i}\right)$.

Description 1

Assume φ is generic.

$$
X_{\varphi}=\left\{x \in \prod_{i} \mathbb{P}^{m_{i}} \mid \bigcap_{i} P_{i} \neq \varnothing\right\} .
$$

Plotting $\varphi^{-1}: X_{\varphi} \rightarrow \mathbb{P}^{n}$ is referee to as triangulation:

Description 2: via Grassmann tensors

Assume φ is generic, and $|\mathbf{m}|:=\sum_{i} m_{i}>n$.
Write s:= $\left(s_{1}, \ldots, s_{r}\right): V \hookrightarrow \bigoplus_{i} W_{i}$.
Fix $\alpha \in \mathbb{Z}^{r}$ such that $1 \leq \alpha_{i} \leq m_{i}$ and $\sum_{i} \alpha_{i}=n+1$.
$\operatorname{pr}_{\alpha}: \Lambda^{n+1} \bigoplus_{i} W_{i} \simeq \bigoplus_{\beta}\left(\otimes_{i} \bigwedge^{\beta_{i}} W_{i}\right) \rightarrow \otimes_{i} \bigwedge^{\alpha_{i}} W_{i}$
$\left[A^{\sigma_{1}, \ldots, \sigma_{r}}\right]:=\left[\operatorname{pr}_{\alpha} \bigwedge^{n+1} \mathbf{s}(V)\right]$ - Grassmann tensor of profile α
$\left(U_{1}, \ldots, U_{r}\right) \in \prod_{i} \operatorname{Gr}\left(m_{i}-\alpha_{i}, \mathbb{P}\left(W_{i}\right)\right) \xrightarrow{\prod_{i} p^{i}} \prod_{i} \mathbb{P}\left(\bigwedge^{\alpha_{i}} W_{i}^{*}\right)$

Description 2

Assume φ is generic. For any profile α,

$$
X_{\varphi} \cap \prod_{i} U_{i} \neq \varnothing \Leftrightarrow \sum_{\sigma_{1}, \ldots, \sigma_{r}} A^{\sigma_{1}, \ldots, \sigma_{r}} p_{\sigma_{1}}^{1} \ldots p_{\sigma_{r}}^{r}=0
$$

Moduli spaces for $|\mathbf{m}|>n$

$$
\begin{aligned}
& \Pi_{i} \mathbb{P}\left(V^{*} \otimes W_{i}\right) \\
& / / P G L(V) \\
& \operatorname{Cam}:=\operatorname{Gr}\left(n+1, \bigoplus_{i} W_{i}\right) / / \mathbb{G}_{m}^{r} \stackrel{\gamma}{\gamma} \operatorname{Hilb}\left(\prod_{i} \mathbb{P}\left(W_{i}\right)\right) \\
& \text { Plücker } \downarrow 1 \cdots \cdots, \pi_{\alpha} \\
& \mathbb{P}\left(\bigwedge^{n+1} \bigoplus_{i} W_{i}\right) / / \mathbb{G}_{m}^{r} \cdots \cdots \overline{\overline{\mathrm{pr}}_{\alpha}} \cdots \stackrel{\cdots}{ }\left(\bigotimes_{i} \bigwedge^{\alpha_{i}} W_{i}\right)
\end{aligned}
$$

Cam
$\mathcal{X}:=\gamma(\mathrm{Cam}) \quad$ —"— of multiview varieties
$\mathcal{A}_{\alpha}:=\pi_{\alpha}(\mathrm{Cam}) \quad$-"—of Grassmann tensors of profile α

Examples for realistic cameras:
$\mathcal{A}_{2,2}, \mathcal{A}_{2,1,1}, \mathcal{A}_{1,1,1,1}$: the epipolar, trifocal, quadrifocal varieties

Projective reconstruction theorem

$$
\mathbf{m}=\left(m_{1}, \ldots, m_{r}\right), \alpha=\left(\alpha_{1}, \ldots, \alpha_{r}\right)
$$

Theorem

Assume φ is generic, and $|\mathbf{m}|>n$.

- (Hertley-Schaffalitzky '09) If $\mathbf{m} \neq\left(1^{n+1}\right), \pi_{\alpha}:$ Cam $\rightarrow \mathcal{A}_{\alpha}$ is generically injective. If $\mathbf{m}=\left(1^{n+1}\right), \pi_{\alpha}$ is generically $2: 1$.
- (Aholt-Sturmfels-Thomas '13, Ito-M-Ueda '17+)

If $\mathbf{m} \neq\left(1^{n+1}\right), \gamma:$ Cam $\rightarrow \mathcal{X}$ is generically injective.
If $\mathbf{m}=\left(1^{n+1}\right), \gamma$ is generically $2: 1$.
If $|\mathbf{m}| \geq 2 n-1, \mathcal{X}$ is an irreducible component of $\operatorname{Hilb} \prod_{i} \mathbb{P}^{m_{i}}$.

Projective reconstruction for $\mathbf{m} \neq\left(1^{n+1}\right)$

Assume φ is generic, and $|\mathbf{m}|>n$.
$\Gamma_{\varphi}:=(\operatorname{id} \times \varphi)\left(\mathbb{P}^{n}\right) \subset \mathbb{P}^{n} \times \prod_{i} \mathbb{P}^{m_{i}}$: the graph of φ

- $\operatorname{Sing} X_{\varphi}=\left\{\operatorname{dim} \bigcap_{i} P_{i} \geq 1\right\}$: singular locus
- X_{φ} is normal and q is small.
- If $\mathbf{m} \neq\left(1^{n+1}\right), D_{1}$ is uniquely determined only from X_{φ}.

Theorem (Ito-M-Ueda '17+)

$$
\varphi^{-1}: X_{\varphi} \rightarrow \mathbb{P}^{n} \text { is given by }\left|\mathcal{O}\left(D_{1}\right) \otimes \mathcal{L}_{1}\right|
$$

Projective reconstruction for $\mathbf{m}=\left(1^{n+1}\right)$

$\mathbf{s}^{\prime}:\left(\oplus_{i} W_{i} / \mathbf{s}(V)\right)^{*} \hookrightarrow \bigoplus_{i} W_{i}^{*}$ gives the dual reconstruction.

Theorem (Ito-M-Ueda '17+)

$$
\varphi^{-1} \circ \varphi^{\prime} \in \operatorname{Bir} \mathbb{P}^{n} \text { is given by }\left|\mathcal{O}(n) \otimes I_{z_{1} \cup \ldots \cup z_{n+1}}\right| \text {. }
$$

Projective reconstruction for $\mathbf{m}=\left(1^{n+1}\right)$

$\mathbf{s}^{\prime}:\left(\oplus_{i} W_{i} / \mathbf{s}(V)\right)^{*} \hookrightarrow \bigoplus_{i} W_{i}^{*}$ gives the dual reconstruction.

Theorem (Ito-M-Ueda '17+)

$$
\varphi^{-1} \circ \varphi^{\prime} \in \operatorname{Bir} \mathbb{P}^{n} \text { is given by }\left|\mathcal{O}(n) \otimes I_{z_{1} \cup \ldots \cup z_{n+1}}\right| \text {. }
$$

Projective reconstruction for $\mathbf{m}=\left(1^{n+1}\right)$

$\mathbf{s}^{\prime}:\left(\oplus_{i} W_{i} / \mathbf{s}(V)\right)^{*} \hookrightarrow \bigoplus_{i} W_{i}^{*}$ gives the dual reconstruction.

Theorem (Ito-M-Ueda '17+)

$$
\varphi^{-1} \circ \varphi^{\prime} \in \operatorname{Bir} \mathbb{P}^{n} \text { is given by }\left|\mathcal{O}(n) \otimes I_{z_{1} \cup \ldots \cup z_{n+1}}\right| \text {. }
$$

Projective reconstruction for $\mathbf{m}=\left(1^{n+1}\right)$

$\mathbf{s}^{\prime}:\left(\oplus_{i} W_{i} / \mathbf{s}(V)\right)^{*} \hookrightarrow \bigoplus_{i} W_{i}^{*}$ gives the dual reconstruction.

Theorem (Ito-M-Ueda '17+)

$$
\varphi^{-1} \circ \varphi^{\prime} \in \operatorname{Bir} \mathbb{P}^{n} \text { is given by }\left|\mathcal{O}(n) \otimes I_{Z_{1} \cup \ldots \cup Z_{n+1}}\right| \text {. }
$$

$:$											

Affine reconstruction theorem

$H \in \mathcal{O}_{\mathbb{P}^{n}}(1)$: hyperplane at infinity

$$
T(H):=\left\{g \in \operatorname{Aut}\left(\mathbb{P}^{n}\right) \mid g=\text { id or }\left(\mathbb{P}^{n}\right)^{g}=H\right\} \simeq \mathbb{R}^{n}
$$

- the group of pure translations on $\left(\mathbb{R}^{n}=\mathbb{P}^{n} \backslash H, \operatorname{Aff} \mathbb{R}^{n}\right)$
\bar{s}_{1}, \bar{s}_{2} : related by a G-motion $\Leftrightarrow \mathbb{P}^{m_{1}}=\mathbb{P}^{m_{2}}$ and $\bar{s}_{2} \in \bar{s}_{1} G$
$\Delta \subset \mathbb{P}^{m} \times \mathbb{P}^{m}:$ the diagonal set

Theorem (Ito-M-Ueda, in preparation)

$\varphi=\left(\bar{s}_{1}, \bar{s}_{2}\right): \mathbb{P}^{n} \rightarrow \mathbb{P}^{m} \times \mathbb{P}^{m}:$ related by a $T(H)$-motion Assume $X_{\varphi} \not \subset \Delta$, then H is uniquely reconstructed from φ.

The affine structure is compatible with the factoring, $\mathbb{P}(V)^{n} \longrightarrow \mathbb{P}\left(V /\left(\text { ker } s_{1} \cap \text { ker } s_{2}\right)\right)^{m+1} \longrightarrow \mathbb{P}(W)^{m} \times \mathbb{P}(W)^{m}$.

Summary

- Two formulations for projective reconstruction are obtained for a generic φ and $|\mathbf{m}|>n$.
- Affine reconstruction is described by some degenerate φ and $|\mathbf{m}| \leq n$ in general.

Future topics:

- Degenerate configurations
- Metric reconstruction problems
(the difference between \mathbb{R} and \mathbb{C} may give difficulty.)

rotating cube in \mathbb{R}^{4}

