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Reconstruction problems in computer vision
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How to describe the problems in arbitrary dimensions?
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Model: world spaces

projective affine metric

(Pn,AutPn) (Rn,Aff Rn) (Rn, SimRn)

Pn: projective space over R
Rn = Pn \ H : Euclidean space as a set

AutPn ≃ PGL(n + 1)

Aff Rn = {g ∈ AutPn | g · H ⊂ H} ≃ GL(n)⋉Rn

SimRn = {g ∈ Aff Rn | g · Q ⊂ Q} ≃ R×O(n)⋉Rn

H ∈ |OPn(1)| — hyperplane at infinity

smooth definite Q ∈ |OH(2)| — absolute quadric
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Model: cameras

s : Rn+1 ↠ Rm+1: a surjective linear map (n > m)

lx ⊂ Rm+1: line corresponding to x ∈ Pm

s̄ : Pn 99K Pm — camera projection

P(ker s) ⊂ Pn — focal locus (dim : n −m − 1)

P(s−1(lx)) ⊂ Pn — back-projected plane (dim : n −m)

Example (Pinhole camera model)

o

P1

v1

ux
u/v

H = {w = 0} ⊃ Q = {u2 + v 2 = 0}

s̄ : P2 ∋

uv
1

 7→
[
u
v

]
≡

[
u/v
1

]
∈ P1

s̄: realistic ⇔ n = 3 and m = 2
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Additional information for reconstruction

s̄i : Pn 99K Pmi (i = 1, . . . , r): camera projections

point correspondences

φ := (s̄1, . . . , s̄r ) : Pn 99K
∏

i Pmi

φ(u) = (s̄1(u), . . . , s̄r (u)) stands for a correspondence.

camera motions

prior knowledge of the scene
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Multiview varieties

Xφ = φ (Pn) — multiview variety

(moduli space of point correspondences)

φ (Pn) := φ (Pn \ Z ) ⊂
∏

i Pmi : the image of φ

Z : the union of focal loci Z1, . . . ,Zr

Questions

How to describe Xφ?

Can we recover φ (up to AutPn) from Xφ ⊂
∏

i Pmi?
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Description 1: via back-projected planes

Each x = (x1, . . . , xr ) ∈
∏

i Pmi corresponds to an r -tuple of

back-projected planes (P1, . . . ,Pr ), where Pi = s̄ −1
i (xi).

Description 1

Assume φ is generic.

Xφ = {x ∈
∏

i Pmi |
∩

i Pi ̸= ∅}.

Plotting φ−1 : Xφ 99K Pn is refered to as triangulation:

⇒ ⇒
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Description 2: via Grassmann tensors

Assume φ is generic, and |m| :=
∑

i mi > n.

Write s := (s1, . . . , sr ) : V ↪→
⊕

i Wi .

Fix α ∈ Zr such that 1 ≤ αi ≤ mi and
∑

i αi = n + 1.

prα :
∧n+1⊕

i Wi ≃
⊕

β

(⊗
i

∧βi Wi

)
↠

⊗
i

∧αi Wi

[Aσ1,...,σr ] :=
[
prα

∧n+1 s(V )
]
— Grassmann tensor of profile α

(U1, . . . ,Ur ) ∈
∏

i Gr(mi − αi ,P(Wi))
∏

i P
(∧αi W ∗

i

)∏
i p

i

Description 2

Assume φ is generic. For any profile α,

Xφ ∩
∏
i

Ui ̸= ∅ ⇔
∑

σ1,...,σr

Aσ1,...,σrp1σ1
. . . prσr

= 0.
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Moduli spaces for |m| > n

∏
i P(V ∗ ⊗Wi)

Cam := Gr(n + 1,
⊕

i Wi)//Gr
m Hilb (

∏
i P(Wi))

P
(∧n+1 ⊕

i Wi

)
//Gr

m P (
⊗

i

∧αi Wi)

//PGL(V )

Plücker

γ

πα

prα

Cam moduli space of camera projections

X := γ (Cam) —”— of multiview varieties

Aα := πα (Cam) —”— of Grassmann tensors of profile α

Examples for realistic cameras:

A2,2,A2,1,1,A1,1,1,1: the epipolar , trifocal , quadrifocal varieties
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Projective reconstruction theorem

m = (m1, . . . ,mr ), α = (α1, . . . , αr )

Theorem

Assume φ is generic, and |m| > n.

(Hertley–Schaffalitzky ’09)

If m ̸= (1n+1), πα : Cam 99K Aα is generically injective.

If m = (1n+1), πα is generically 2 : 1.

(Aholt–Sturmfels–Thomas ’13, Ito–M–Ueda ’17+)

If m ̸= (1n+1), γ : Cam 99K X is generically injective.

If m = (1n+1), γ is generically 2 : 1.

If |m| ≥ 2n − 1, X is an irreducible component of Hilb
∏

i Pmi .
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Projective reconstruction for m ̸= (1n+1)

Assume φ is generic, and |m| > n.

Γφ := (id×φ)(Pn) ⊂ Pn ×
∏

i Pmi : the graph of φ

Γφ

Pn Xφ

p q

φ

L1 = ι∗ pr∗1OPm1 (1)

E1 = p−1(Z1)

D1 = q(E1) = Pm1 × something

SingXφ = {dim
∩

i Pi ≥ 1}: singular locus
Xφ is normal and q is small.

If m ̸= (1n+1), D1 is uniquely determined only from Xφ.

Theorem (Ito–M–Ueda ’17+)

φ−1 : Xφ 99K Pn is given by |O(D1)⊗ L1|.
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Projective reconstruction for m = (1n+1)

s′ :
(⊕

i Wi/s(V )
)∗

↪→
⊕

i W
∗
i gives the dual reconstruction.

Theorem (Ito–M–Ueda ’17+)

φ−1 ◦ φ′ ∈ BirPn is given by |O(n)⊗ IZ1∪···∪Zn+1|.
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Affine reconstruction theorem

H ∈ OPn(1): hyperplane at infinity

T (H) := {g ∈ Aut(Pn) | g = id or (Pn)g = H} ≃ Rn

— the group of pure translations on (Rn = Pn\H ,Aff Rn)

s̄1, s̄2: related by a G -motion ⇔ Pm1 = Pm2 and s̄2 ∈ s̄1G

∆ ⊂ Pm × Pm: the diagonal set

Theorem (Ito–M–Ueda, in preparation)

φ = (s̄1, s̄2) : Pn 99K Pm × Pm: related by a T (H)-motion

Assume Xφ ̸⊂ ∆, then H is uniquely reconstructed from φ.

The affine structure is compatible with the factoring,

P(V )n 99K P (V /(ker s1 ∩ ker s2))
m+1 99K P(W )m × P(W )m.
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Summary

Two formulations for projective reconstruction are
obtained for a generic φ and |m| > n.

Affine reconstruction is described by some degenerate φ
and |m| ≤ n in general.

Future topics:

Degenerate configurations

Metric reconstruction problems
(the difference between R and C may give difficulty.)

rotating cube in R4


