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Abstract

In this article, we summarize combinatorial description of complete intersection Calabi–Yau threefolds in Hibi toric
varieties. Such Calabi–Yau threefolds have at worst conifold singularities, and are often smoothable to non-singular
Calabi–Yau threefolds. We focus on such non-singular Calabi–Yau threefolds of Picard number one, and illustrate the
calculation of topological invariants, using new motivating examples.

1 Introduction

A Hibi toric variety is defined as a projective toric variety P∆(P ) associated with an order polytope

∆(P ) = {(xu)u∈P | 0 ≤ xu ≤ xv ≤ 1 for u ≺ v ∈ P} ⊂ RP , (1)

for a finite poset P = (P,≺). For example, all products of projective spaces are Hibi toric varieties; hence at least
2590 topologically distinct non-singular Calabi–Yau threefolds are obtained as complete intersections [12]. In general,
complete intersection Calabi–Yau threefolds in Hibi toric varieties have finite number of nodes, and are often smoothable
to non-singular Calabi–Yau threefolds by flat deformations. Complete intersections in Grassmannians (or more generally
in minuscule Schubert varieties) give basic examples of such smoothing [5, 17].

The purpose of this article is to provide a brief summary on combinatorial descriptions of complete intersection Calabi–
Yau threefolds in Hibi toric varieties and their smoothing. Based on [7], we describe the smoothability in terms of posets
(Proposition 3.6), and survey the calculation of topological invariants for resulting non-singular simply-connected Calabi–
Yau threefolds (Subsection 4.2), by focusing on the case of Picard number one for simplicity. In addition to the summary, we
show the simply-connectedness as a corollary of the result on small resolutions for Hibi toric varieties (Proposition 2.6).
To illustrate the calculation, we introduce several new examples of such non-singular Calabi–Yau threefolds of Picard
number one (Subsection 4.3, Table 1).

A Calabi–Yau threefold is a complex projective threefold X with at worst canonical singularities satisfying ωX ' OX
and H1(X,OX) = 0. There are a huge number of such threefolds, even non-singular. Mirror symmetry is a conjectural
duality between a non-singular Calabi–Yau threefold X and another non-singular Calabi–Yau threefold X∗, called a mirror
manifold for X. Various non-trivial relations between X and X∗ are expected. For example, Hodge numbers satisfy

hi,j(X) = h3−j,i(X∗) for all i and j. (2)

One of the big mysteries of mirror symmetry is whether every non-singular Calabi–Yau threefold X has a mirror
manifold X∗ or not. Note an obvious exception in the case with h2,1(X) = 0, and that the mirror manifold X∗ is not
unique in general, even as topological manifolds. There is an excellent class of non-singular Calabi–Yau threefolds such
that the above question has an affirmative answer; for crepant resolutions of complete intersection Calabi–Yau threefolds
in Gorenstein toric Fano varieties, we have mirror manifolds in the same class, called the Batyrev–Borisov mirrors [3, 8].
In order to expand this class, the conjectural mirror construction via conifold transitions seems to be a promising direction.

Let X0 be a Calabi–Yau threefold with finitely many nodes. Suppose that X0 admits a smoothing X  X0 by a flat
deformation, and a small resolution Y → X0. The composite operation connecting two non-singular Calabi–Yau threefolds
X and Y is called a conifold transition:

X  X0 ← Y. (3)

There is a natural closed immersion of the Kuranishi space Def(Y ) to Def(X0) [19, Proposition 2.3], and hence, it makes
sense to put them together into some giant moduli space. There is a question, commonly referred to as (a version of)
Reid’s fantasy , which asks whether all simply-connected non-singular Calabi–Yau threefolds fit together into a single
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irreducible family via conifold transitions [20]. Suppose that X and Y have torsion-free homology for a conifold transition
(3). Morrison’s conjecture in [18] says that the mirror manifolds are also connected via a conifold transition of the opposite
direction:

Y ∗  Y ∗0 ← X∗. (4)

Together with the spirit of Reid’s fantasy, one may expect a mirror construction for a large number of non-singular
Calabi–Yau threefolds from the Batyrev–Borisov mirror pairs.

We still do not know the existence of a mirror manifold X∗, even for the smoothing X  X0 of a complete intersection
Calabi–Yau threefold X0 in a Hibi toric variety. Nevertheless, we can discuss the mirror symmetry by calculating periods
and Picard–Fuchs operators for the conjectural mirror family, as we see in Remark 4.3 for example.

2 Hibi toric varieties

2.1 Examples

Let us begin with simple examples of Hibi toric varieties. For the empty poset, we set the Hibi toric variety P∆(∅) to be
a point. For a singleton u := {u} (by abuse of notation), the order polytope is a line segment ∆(u) = [0, 1], and hence,
the Hibi toric variety P∆(u) is a projective line P1.

Let P be a finite poset consisting of n := |P | elements. If P is a chain, i.e., a totally ordered set, the order polytope
∆(P ) is a regular simplex defined by the inequalities 0 ≤ x1 ≤ · · · ≤ xn ≤ 1, so that the Hibi toric variety P∆(P ) is a
projective space Pn. It is equally clear the case that P is an anti-chain, i.e., the poset in which every pair of elements is
incomparable. In this case, the order polytope ∆(P ) is a unit hypercube [0, 1]n, and the Hibi toric variety P∆(P ) is the
product of n copies of P1.

Example 2.1. A first non-trivial example is a poset P = {u, v, w} with the partial order defined by u � w and v � w.
The defining inequalities of the order polytope ∆(P ) is shown in the left of Figure 1, also depicted symbolically in the
middle. It becomes a pyramid in RP ' R3 as shown in the right of Figure 1. Therefore, the associated Hibi toric variety
P∆(P ) is a projective cone over P1 × P1 with a general apex in P3.

1
≤ ≥

xu xv
≥ ≤
xw

≤

0 *

*

Figure 1: An example of order polytopes

A disjoint union P = P1 + P2 of finite posets P1 and P2 is a disjoint union as sets equipped with the partial order ≺
satisfying (i) u ∈ P1, v ∈ P1 and u ≺ v ∈ P1 imply u ≺ v ∈ P , (ii) u ∈ P2, v ∈ P2 and u ≺ v ∈ P2 imply u ≺ v ∈ P , and
(iii) u ∈ P1 and v ∈ P2 imply u 6∼ v ∈ P (i.e., u and v are incomparable in P ). The corresponding Hibi toric variety is
projectively equivalent to the product of two Hibi toric varieties,

P∆(P1+P2) ' P∆(P1) × P∆(P2). (5)

A ordinal sum P = P1 ⊕P2 of P1 and P2 is a disjoint union as sets equipped with the partial order ≺ satisfying the same
(i) and (ii) as the disjoint union P1 + P2 above, and (iii)′ u ∈ P1 and v ∈ P2 imply u ≺ v ∈ P . Note that the operation
⊕ is not commutative though it is associative. The corresponding Hibi toric variety is a special hyperplane section of a
projective join of two Hibi toric varieties with general positions,

P∆(P1⊕u⊕P2) ' Join
(
P∆(P1),P∆(P2)

)
. (6)

These operations generalize the examples, a chain P =
⊕n

i=1 ui, an anti-chain P =
∑n
i=1 ui, and P = w ⊕ (u + v) =

∅⊕ w ⊕ (u+ v) in Example 2.1.
The posets built up by disjoint unions and ordinal sums from singletons are sometimes called series-parallel posets.

One of the simplest examples that are not series-parallel is the poset with the Hasse diagram:

(7)
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Recall that, in a Hasse diagram for a poset P , a vertex represents an element of P and an oriented edge represents a
covering relation u <· v on P , that is,

u ≺ v and there is no w ∈ P such that u ≺ w ≺ v. (8)

For example, the Hasse diagram (7) represents the poset P = {a, b, c, d} with a ≺ b � c ≺ d. The associated Hibi toric
variety P∆(P ) is a limit of a toric degeneration of a general linear section fourfold in a Grassmannian G(2, 5).

2.2 Invariant subvarieties and singularities

Invariant subvarieties of Hibi toric varieties are again (projectively equivalent to) lower dimensional Hibi toric varieties.
We follow the description of invariant subvarieties by Wagner [22].

Let P be a finite poset. The associated bounded poset is defined as

P̂ := 0̂⊕ P ⊕ 1̂, (9)

where 0̂ and 1̂ are singletons. By definition, the elements 0̂ and 1̂ are the unique minimal and the maximal elements in
P̂ , respectively. Note that the Hasse diagram of P̂ can be regarded as the graph describing the defining inequalities of
order polytope ∆(P ), as we see in the middle of Figure 1. We use this identification between inequalities with edges, and
variables with vertices for the Hasse diagram of P̂ . Furthermore, by abuse of notation, we write the same symbol P as
the Hasse diagram of P . For example, we say that P is connected if the Hasse diagram of P is connected, and P is a cycle
if the Hasse diagram of P is a cycle as an unoriented graph, and so on.

Definition 2.2. Let P̂ be a bounded poset. A surjective order-preserving map

ϕ : P̂ → P̂ ′ (10)

with ϕ(0̂) = 0̂ and ϕ(1̂) = 1̂ is called a contraction of P̂ if every fiber is connected and there exists a covering relation
u <· v ∈ P̂ for all ū <· v̄ ∈ P̂ ′ such that ū = ϕ(u) and v̄ = ϕ(v).

There is a one-to-one correspondence between faces of order polytope ∆(P ) and contractions of the associated bounded
poset P̂ . More precisely, a face θϕ corresponding to a contraction ϕ : P̂ → P̂ ′ is unimodular equivalent to the order polytope
∆(P ′). In other words, the associated invariant subvariety of a Hibi toric variety P∆(P ) is projectively equivalent to the Hibi
toric variety P∆(P ′), as mentioned at the beginning of this subsection. In particular, we have one-to-one correspondences

between facets of ∆(P ) and edges of P̂ , and vertices of ∆(P ) and order ideals of P . Here an order ideal is defined as a
subset τ ⊂ P satisfying

u ∈ τ, v ∈ P and u � v imply v ∈ τ. (11)

Let us write the set of edges of P̂ as E = Edges(P̂ ), and the set of order ideals of P as J(P ).
We illustrate the correspondences by using the poset P in Example 2.1. We have five facets corresponding to E, and

five vertices corresponding to J(P ). The defining equalities of a face θϕ can be obtained by making all variables in a fiber
ϕ−1(ū) equal.

*

* →
*

*

*

*
→

*
*

*

* →
*

*

*

*
→

*
*

*

*
→

*

*

*

*
→

*
*

*

*
→

*

*

*

*
→

*
*

*

*
→ *

*

*

*
→

*
*

Figure 2: One-to-one correspondence between faces and contractions
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In Figure 2, four facets of the order polytope ∆(P ) are meeting at the same vertex circled. Hence the corresponding
point should be singular in P∆(P ). In general, a singular locus comes from a contraction replacing more inequalities to

equalities than codimension. A subposet C ⊂ P̂ is said to be convex if it satisfies

u ∈ C, v ∈ C and u ≺ w ≺ v imply w ∈ C. (12)

Furthermore, let us call C ⊂ P̂ a minimal convex cycle if C is (i) a full subposet not containing both 0̂ and 1̂, and (ii) a
convex cycle such that all convex full subposets C ′ ⊂ C are trees.

Theorem 2.3 ([22, Corollary 2.4]). Let P be a finite poset. An irreducible singular locus of P∆(P ) corresponds to a

minimal convex cycle C ⊂ P̂ . For the corresponding contraction, all the fibers are singletons except one fiber C.

Remark 2.4. Now it is worth noting the homogeneous coordinate rings of Hibi toric varieties. Since all the lattice points
in ∆(P ) are vertices, the homogeneous coordinate ring of P∆(P ) is a Hibi algebra,

AJ(P ) = C [J(P )] /IJ(P ), (13)

where C [J(P )] is the polynomial C-algebra in variables pτ for τ ∈ J(P ), and IJ(P ) is the ideal coming from linear relations
of vertices of ∆(P ). In fact, the ideal IJ(P ) has quadratic generators,

pαpβ − pα∨βpα∧β for all α 6∼ β ∈ J(P ). (14)

Note here that J(P ) is a lattice, i.e., a poset with the least upper bound α ∨ β and the greatest lower bound α ∧ β for
each pair of elements. In fact, J(P ) with the partial order given by set inclusions is equipped with α ∨ β = α ∪ β and
α ∧ β = α ∩ β. Furthermore, J(P ) becomes a distributive lattice, i.e., the lattice with distributive laws,

α ∧ (β ∨ γ) = (α ∧ β) ∨ (α ∧ γ) for all α, β, γ ∈ J(P ). (15)

One may start from finite distributive lattices instead of finite posets, which gives another description of Hibi toric varieties
in literature.

Example 2.5. Under the notation in Remark 2.4, the Hibi toric variety P∆(P ) in Example 2.1 is embedded as a quadric
threefold in P4 defined by

p p − p p = 0. (16)

2.3 Divisors

Let P be a finite poset. For each edge e ∈ E = Edges(P̂ ), we have the corresponding invariant prime divisor, denoted by
De. We write DE′ =

∑
e∈E′ De for each subset E′ ⊂ E. The linear equivalences in the divisor class group Cl(P∆(P )) are

generated by the following relations: ∑
s(e)=u

De '
∑

t(e′)=u

De′ for all u ∈ P, (17)

where we write t(e) <· s(e) for each e = (s(e), t(e)) ∈ E ⊂ P̂ × P̂ .
Let us describe the Picard group of P∆(P ). First, suppose P is connected. For an order ideal τ ⊂ P and a subset

E′ ⊂ E, a set of edges

E′(τ) =
{
e ∈ E′ | t(e) ∈ 0̂⊕ τ and s(e) 6∈ 0̂⊕ τ

}
(18)

defines a Weil divisor DE′(τ) on P∆(P ). We have DE(τ) ' DE(P ) for all τ ∈ J(P ). The divisor DE(P ) is, in fact, the
Cartier divisor corresponding to the lattice polytope ∆(P ) itself. One can show that the Picard group is isomorphic to Z
generated by the associated very ample invertible sheaf O(1) = O(DE(P )).

More generally, suppose P =
∑ρ
j=1 Pj with ρ connected components P1, . . . , Pρ. Note that there is a natural decom-

position as sets

E =

ρ⊔
j=1

Ej , (19)
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where Ej := Edges(P̂j) ⊂ E for each j. The Picard group Pic(P∆(P )) becomes a free abelian group of rank ρ generated
by

Lj := O
(
DEj(Pj)

)
(20)

for each connected component Pj ⊂ P . We have

O(1) = O(DE(P )) =

ρ⊗
j=1

Lj . (21)

Next, we note a formula for the self-intersection number,(
Dn
E(P )

)
= n! Vol ∆(P ) = cJ(P ), (22)

where cJ(P ) denotes the number of maximal chains on J(P ). It follows from a formula for the Hilbert–Poincaré series of
Hibi algebra AJ(P ) obtained by [15, Corollary of Lemma 5].

Lastly, let us suppose P is pure. Recall that a finite poset P is called pure if every maximal chain on P has the same
length. We define a height h(u) of u ∈ P̂ as the length of the longest chain bounded above by u in P̂ , and write hP = h(1̂).
Thus an anti-canonical divisor −KP∆(P )

= DE is written as

−KP∆(P )
=

hP∑
k=1

DE(τk) ' hPDE(P ), (23)

where τk := {u ∈ P | h(u) < k} ∈ J(P ) for k = 1, . . . , hP . Together with (21), it turns out that the Hibi toric variety
P∆(P ) for a pure poset P is a Gorenstein Fano variety with ω∨ = O(−KP∆(P )

) ' O(hP ). Moreover, one can show that it
has at worst terminal singularities, by looking at the normal fan Σ of ∆(P ) (see [13, Lemma 1.4]).

2.4 Small resolution

Let P be a finite pure poset. The associated Hibi toric variety P∆(P ) is a Gorenstein terminal Fano variety with ω∨ '
O(hP ). If P∆(P ) is Q-factorial in addition, it turns out to be non-singular, and even more, a product of projective spaces
by [13, Corollary 2.4]. Even if it is not Q-factorial, we have the following property indicating the mildness of singularities
of P∆(P ).

Proposition 2.6. For a finite pure poset P , any toric crepant Q-factorialization of the Hibi toric variety P∆(P ) is a small
resolution.

Proof. Let P be a finite poset, N = ZP and M = ZP the free abelian groups of rank n = |P | dual to each other, and
NR = RP and MR = RP the real scalar extensions, respectively.

First, let us see a description of the normal fan Σ in NR for the order polytope ∆(P ) ⊂ MR. By definition, a one-
dimensional cone in Σ is generated by the normal vector of a facet of ∆(P ). Hence it corresponds to an edge of P̂ . Let
δ(e) ∈ N denote such primitive vector associated with e ∈ E, The map δ is extended to be the composite linear map
δ = pr ◦ ∂ : ZE → N of

∂ : ZE → ZP̂ = N ⊕ Z0̂⊕ Z1̂, e 7→ ∂(e) := t(e)− s(e) (24)

and a projection pr : N ⊕ Z0̂ ⊕ Z1̂ → N . By using the same symbol δ as the real extension, each maximal dimensional
cone in Σ associated with an order ideal τ ∈ J(P ) is written as

στ := Cone δ (E \ E(τ)) ⊂ NR, (25)

where E(τ) is defined by (18). On the other hand, Conv δ(E) is a Gorenstein terminal Fano polytope by [13, Lemma
1.3–1.5]. Namely, for any τ ∈ J(P ), all the primitive generators of the cone στ , i.e., the elements in δ(E \E(τ)), lie on an
affine hyperplane with integral distance one from the origin, and it holds

(Conv δ(E \ E(τ))) ∩N = δ (E \ E(τ)) . (26)

Suppose P is pure, and let XΣ̂ → P∆(P ) be a toric crepant Q-factorialization. In other words, Σ̂ is a maximal simplicial
refinement of the normal fan Σ of ∆(P ) such that XΣ̂ denotes the corresponding Q-factorial toric variety. Since P∆(P )
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has at worst terminal singularities, the crepant birational morphism XΣ̂ → P∆(P ) is a small modification by definition.
Hence it is sufficient to show that XΣ̂ is non-singular.

Fix a maximal dimensional cone σ in Σ̂. Since (25) and (26), there exist an order ideal τ ⊂ P and a subset B ⊂ E\E(τ)
consisting of n+1 elements such that σ = Cone δ(B) ⊂ στ . As in the example shown in Figure 3, the subgraph (P̂ , E\E(τ))
of the Hasse diagram of P̂ defining στ consists of two connected graphs, and the subgraph (P̂ , B) defining σ consists of
two connected tree graphs. In fact, if (P̂ , B) contains a cycle, σ cannot have maximal dimension. Therefore, we have
a unique unoriented path in (P̂ , B) from any u ∈ P to 0̂ or 1̂, which attains a value ±u ∈ Zδ(B) by summing up and
mapping by δ. Hence δ(B) forms a Z-basis of N = ZP . Since σ is arbitrary, it follows that XΣ̂ is non-singular.

E

*

*

E \ E(τ)

*

*

B

*

*

Figure 3: An example of subgraphs corresponding to στ and σ

3 CICY threefolds in Hibi toric varieties

3.1 Examples

We describe Calabi–Yau threefolds obtained as a complete intersection of general sections of invertible sheaves in Hibi toric
varieties. We call such Calabi–Yau threefolds complete intersection Calabi–Yau (CICY) threefolds in Hibi toric varieties.

Let P be a finite poset, and X0 a CICY threefold in P∆(P ). From the adjunction formula, P∆(P ) has at worst
Gorenstein singularities. In other words, all connected components of P are pure. If P is a disjoint union of several
pure connected posets, we have a number of Calabi–Yau threefolds as complete intersections of nef divisors in P∆(P ), e.g.,
complete intersection Calabi–Yau threefolds in products of projective spaces. However, we assume in the sequel that P
is pure connected for simplicity. Under this assumption, X0 is merely a complete intersection of very ample divisors in
P∆(P ). Let (d1, . . . , dr) ⊂ P∆(P ) denote a complete intersection variety of very ample divisors defined by general sections
of O(d1), . . . ,O(dr), respectively. Then X0 = (d1, . . . , dr) ⊂ P∆(P ) is a CICY threefold if and only if

r∑
j=1

dj = hP and |P | − r = 3. (27)

Example 3.1. The poset in (7) gives an example of hypersurface Calabi–Yau threefolds in Hibi toric varieties. Thus
X0 = (d1 = 3) ⊂ P∆(P ) in this case.

Example 3.2. As an example to illustrate calculations, we introduce a finite pure connected poset P = P1:

(28)

We have |P1| = 6 and hP1 = 3, and hence, the associated Hibi toric variety P∆(P1) is a six-dimensional Gorenstein terminal
Fano variety with ω∨ ' O(3). We have a linear section Calabi–Yau threefold X0 = (13) ⊂ P∆(P1).

The first part of J(P1) corresponds to order ideals in the left of Figure 4. By continuing while focusing on set
inclusions, we obtain the lattice J(P1) as in the middle of Figure 4, consisting of |J(P1)| = 18 elements. Moreover, we
have cJ(P1) = 48, the number of maximal chains on J(P1), by counting as in the right in Figure 4.

...

1

1 1 1

2
2

2

2 2 26

8
8

8

16 16 16

48

Figure 4: On the Hasse diagram of J(P1)
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3.2 Stringy Hodge numbers

Let P be a pure connected poset and X0 = (d1, . . . , dr) ⊂ P∆(P ). We have a small resolution Y → X0, by taking the strict
transform of X0 for a small toric resolution XΣ̂ → P∆(P ) for example. In this case, the stringy Hodge numbers of X0 are
nothing but usual Hodge numbers of Y . From [4, Proposition 8.6], the following combinatorial formulas hold.

Proposition 3.3.

h1,1
st (X0) = h1,1(Y ) =|E| − |P |, (29)

h1,2
st (X0) = h1,2(Y ) =

∑
i∈[r]

∑
J⊂[r]

(−1)|J|l ((di − dJ)∆(P ))


−
∑
J⊂[r]

(−1)r−|J|

[∑
e∈E

l∗(dJθe)

]
− |P |,

(30)

where l(θ) and l∗(θ) denote the number of lattice points in a face θ ⊂ MR and in the interior of θ, respectively; [r] =
{1, . . . , r}, dJ =

∑
j∈J dj and θe is the facet of ∆(P ) corresponding to an edge e ∈ E.

Note that a nonzero contribution in the first term of (30) comes only from the range of di − dJ ≥ 0, and in the second
term it comes only from the range dJ = hP − 1 or hP . In particular, if (i) dj = 1 for all j, and (ii) P has no ordinal
summand of singleton, i.e., P 6= P1 ⊕ u⊕ P2 for any P1 and P2, we have

h1,2
st (X0) = h1,2(Y ) = hP (|J(P )| − hP )−

∑
e∈E

l∗ (hP θe)− |P |. (31)

Example 3.4. For the example P = P1 and a complete intersection X0 = (13), we obtain h1,1
st (X0) = 12 − 6 = 6 from

(29). Since the both conditions (i) and (ii) are satisfied, the simplified formula (31) holds in this case. By the symmetry
S3 ×S3 of P̂1 as a poset and the order duality, it suffices to see the following two types of facets:

*

*
→

*

*
and

*

*
→

*

*
. (32)

There are six facets for each type, and clearly l∗(3θ) = 1 (resp. 0) for the former (resp. the latter) type. Therefore
h1,2

st (X0) = 3(18− 3)− 6− 6 = 33.

3.3 Numbers of nodes

Recall that three-dimensional Gorenstein terminal toric singularities are at worst nodes (i.e, ordinary double points),
since they are presented by three-dimensional cones over a unit triangle or a unit square. Together with the Bertini-type
theorem for toroidal singularities, the singularities of X0 are also at worst nodes. We count the number of nodes dp(X0)
on X0 in the following.

Each node on X0 lies on one singular locus of codimension three of P∆(P ), corresponding to a minimal convex cycle

C ⊂ P̂ with four elements. There are four types of such minimal convex cycles:

, * ,
*

or . (33)

Let Λ4(P̂ ) denote the set of such minimal convex cycles consisting of four elements on P̂ . For each C ∈ Λ4(P̂ ), there
is the contraction P̂ → P̂C such that all the fibers are singleton except one fiber C. Of course it holds |PC | = |P | − 3
for all C ∈ Λ4(P̂ ). Hence C defines a singular locus of codimension three and of degree deg ∆(PC) = cJ(PC) from (22).
Therefore, the number of nodes dp(X0) is calculated by a formula

dp(X0) =

r∏
j=1

dj
∑

C∈Λ4(P̂ )

cJ(PC). (34)
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Example 3.5. There are six minimal convex cycles on P̂1, each of which consists of four elements. By symmetry, they
are all equivalent to

*

*
→ *

*
. (35)

Since the locus is a quadric threefold in Example 2.5, we obtain dp(X0) = 6 · 2 = 12.

3.4 Smoothability

For smoothability, we follow the argument in the case of hypersurfaces in toric varieties by [7]. Let {p1, . . . , pdp} be the
set of nodes on X0, where dp = dp(X0), and f : Y → X0 be a small resolution. The exceptional lines Li := f−1(pi) ' P1

for i = 1, . . . ,dp form a linear subspace of H2(Y,C). By [19, Theorem 2.5], the Calabi–Yau threefold X0 is smoothable
by a flat deformation if and only if the homology classes [Li] ∈ H2(Y,C) satisfy a relation,

dp∑
i=1

αi[Li] = 0, (36)

where αi 6= 0 for all i = 1, . . . ,dp.
Note that one can identify

H2(Y,Q) '

{
(λe)e∈E

∣∣∣∣∣∑
e∈E

λeδ(e) = 0

}
⊂ QE . (37)

Under this identification, the homology class [Li] coincides with a relation,

ρC : δ(ep) + δ(eq)− δ(er)− δ(es) = 0 (38)

up to signs, where the corresponding node pi lies on a singular locus associated with a minimal convex cycle C ∈ Λ4(P̂ ),
and the cycle C with an orientation passes through the four edges; ep, eq in the forward direction and er, es in the opposite
direction.

Proposition 3.6. Let P be a pure connected poset, X0 a CICY threefold of degree (d1, . . . , dr) in the Hibi toric variety
P∆(P ). If

∏r
j=1 dj > 1, X0 is smoothable. If

∏r
j=1 dj = 1, X0 is smoothable if and only if for any C ∈ Λ4(P̂ ) such that

PC is a chain the element ρC is a linear combination of the remaining elements ρC′ with C ′ ∈ Λ4(P̂ ), C 6= C ′.

Example 3.7. For the example P = P1, X0 = (13) is smoothable since PC is not a chain for all C ∈ Λ4(P̂1) as we see in

(35), although
∏3
j=1 dj = 1.

Example 3.8. There are cases that X0 is not smoothable. For example, in (39) we present the two cycles on the depicted
P̂ satisfying the condition that PC is a chain,

*

*
=

*

*
−

*

*
and

*

*
. (39)

The former cycle is a linear combination of remaining cycles as expressed by abuse of notation. However, the latter cycle
is linearly independent to other cycles. Therefore, X0 = (14) is not smoothable by Proposition 3.6.

4 Smoothing of CICY threefolds in Hibi toric varieties

4.1 Simply-connectedness

Proposition 4.1 (Corollary of Proposition 2.6). Let P be a pure poset, X0 a CICY threefold in P∆(P ), and Y → X0 a
small resolution. Then Y is simply-connected. If a smoothing X  X0 exists, X is also simply-connected.
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Proof. By Proposition 2.6, we have a small resolution XΣ̂ → XΣ = P∆(P ). Since XΣ̂ is a compact toric variety, it is

simply-connected (see for example [10, Theorem 9.1]). Let Σ(1) denote the subfan of Σ consisting of cones of dimension

less than or equal to one. Note Σ̂(1) = Σ(1). The quasi-projective toric variety XΣ(1) is simply-connected as well. In
fact, the difference between XΣ̂ and XΣ(1) in subsets of real codimension four does not effect fundamental groups. By the
Lefschetz theorem for non-singular quasi-projective manifolds [11, 14], a complete intersection XΣ(1) ∩X0 = XΣ̂(1) ∩ Y is
also simply-connected. Similarly as above, the difference between XΣ̂(1) ∩ Y and Y does not effect fundamental groups.
Therefore Y is also simply-connected. The latter statement follows from the fact that a conifold transition does not change
fundamental groups.

Let X be a smoothing of a CICY threefold in Hibi toric variety. We do not know whether homology groups of X can
have torsion or not. Suppose that X has torsion-free homology and h1,1(X) = 1. In this case, by Wall’s theorem [23,
Theorem 5], the diffeomorphism class of X is determined only by the three topological invariants,

degX, c2(X) ·H, and χ(X), (40)

where H is the hyperplane class, c2(X) is the second Chern class and χ(X) = 2
(
h1,1(X)− h2,1(X)

)
is the topological

Euler number of X. We summarize the calculation of these topological invariants in the next subsection.

4.2 Topological invariants

For a conifold transition X  X0 ← Y , Hodge numbers satisfy

h1,1(X) = h1,1(Y )− rk, (41)

h1,2(X) = h1,2(Y ) + dp− rk, (42)

where rk = rk(X0) is the dimension of linear subspace of H2(Y,C) spanned by classes of exceptional lines [Li] for
i = 1, . . .dp, i.e.,

rk(X0) = rank
(
ρC

∣∣∣C ∈ Λ4(P̂ )
)
. (43)

and dp = dp(X0) is the number of nodes on X0, which we compute by (34). In particular, from h1,1(Y ) = |E| − |P | =
b1(P̂ ) + 1, we have h1,1(X) = 1 if and only if all minimal cycles on P̂ are generated by cycles in Λ4(P̂ ).

Assume h1,1(X) = 1. From (22) and the invariance by a flat deformation, it holds

degX = degX0 = cJ(P )

r∏
j=1

dj . (44)

Since also the invariance χ(X,OX(1)) = χ(X0,OX0(1)) and a standard cohomology calculation for complete intersection
varieties in P∆(P ), we obtain

χ(X,OX(1)) = dimH0(X0,OX0(1)) (45)

= dimH0(P∆(P ),OP∆(P )
(1))− r1 (46)

= |J(P )| − r1, (47)

where r1 = # {j | dj = 1}. Therefore the Hirzebruch–Riemann–Roch theorem gives

c2(X) ·H = 12χ(X,OX(1))− 2 degX (48)

= 12 (|J(P )| − r1)− 2cJ(P )

r∏
j=1

dj . (49)

Example 4.2. For P = P1, h1,1(X) = 1 holds since all minimal cycles are in Λ4(P̂1). Hence rk(X0) = 5 by (41). From
h1,2(Y ) = 33 and dp(X0) = 12, it holds h1,2(X) = 40 and χ(X) = 2(h1,1(X) − h1,2(X)) = −78 by (42). We also obtain
deg(X) = 48 and c2(X) ·H = 12(18− 3)− 2 · 48 = 84 by (44) and (49), respectively.
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4.3 Examples

Let P be a pure poset and X0 a CICY threefold in P∆(P ). We write X = XP for a smoothing X  X0 if it exists.
In spite of the large number of smoothable CICY threefolds in Hibi toric varieties, there are few examples of XP with
h1,1(XP ) = 1. From [17, Proposition 3.1], we have twelve such threefolds as complete intersections in minuscule Schubert
varieties up to deformation equivalence; five in projective spaces, five in other Grassmannians G(k, n), one in an orthogonal
Grassmannian OG(5, 10), and one in a singular Schubert variety of the Cayley plane OP2. The latter two threefolds are
also regarded as complete intersections of some homogeneous vector bundles on Grassmannians, i.e., No. 4 and No. 7 in
[16, Table 1], respectively. Apart from these twelve examples, we introduce six more examples in Table 1. The topological
invariants are computed by formulas in the previous subsection.

Table 1: Examples of X of Picard number one.

posets Pi P1 P2 P3 P4 P5 P6

Hasse diagrams ⊕

degrees (13) (15) (14) (13) (1, 2) (15)

degXPi 48 29 42 61 32 25

c2(XPi) ·H 84 74 84 94 80 70

χ(XPi) −78 −100 −96 −86 −116 −100

Note that XP4
, XP5

and XP6
are deformation equivalent to complete intersections of some homogeneous vector bundles

on Grassmannians, i.e., No. 23, No. 20 and No. 5 in [16, Table 1], respectively (from a private communication with Daisuke
Inoue and Atsushi Ito for XP4

). Furthermore, XP5
and XP6

are also regarded as a complete intersection (12, 2) in a
Lagrangian Grassmannian LG(3, 6), and a complete intersection of two Grassmannians G(2, 5) in P9, respectively.

Remark 4.3. Let us discuss mirror symmetry for examples in Table 1. For each conifold transition X  X0 ← Y , we
expect another conifold transition Y ∗  Y ∗0 ← X∗ in the mirror side, if X and Y have torsion-free homology. We have a
Batyrev–Borisov mirror Y ∗ for Y ⊂ PΣ̂, and the degeneration Y ∗  Y ∗0 corresponding to the small resolution Y → X0

based on the argument by [2]. However, we do not know whether Y ∗0 has the same number of nodes as X0 and admits
a small resolution X∗ → Y ∗0 or not. In spite of that, periods and the Picard–Fuchs operator vanishing the periods for
the conjectural mirror family are computable in advance. The resulting operators in the case of P2, P3, P4, P5 and P6

coincide with already known operators, #195, #28, #124, #42, and #101 in [21, 1], respectively.
The operator for P1 seems unknown, thus we write it here. A formula for the fundamental period ω0(z) =

∑∞
m=0Amz

m

is given in [17, Eq. (5,2)], where

Am =
∑

s,t,u,v,w

(
s
u

)(
v
s

)(
t
s

)(
t
v

)(
w
t

)(
m
t

)(
m
w

)(
v − t+ w
u− s+ v

)(
m

v − t+ w

)
(50)

is read from the (slightly modified) dual graph of P̂1, by associating binomial coefficients with oriented edges and linear
relations with pairs of dashed edges:

*

*

s t

u v w m

a b

0

{
a = u− s+ v,

b = v − t+ w.
(51)
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With the aid of numerical method, we obtain the following Picard–Fuchs operator for a conjectural mirror family for XP1
,

D = θ4 − 2z(33θ4 + 58θ3 + 48θ2 + 19θ + 3)

+ 4z2(174θ4 + 448θ3 + 527θ2 + 314θ + 75)

− 8z3(332θ4 + 1096θ3 + 1507θ2 + 953θ + 228)

+ 96z4(θ + 1)2(6θ + 5)(6θ + 7),

(52)

where θ = z∂z and Dω0(z) = 0. We observe that the operator generates integral BPS numbers for genus 0 and genus 1
with small degrees, by standard methods for the computation [9, 6].
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