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1 Hibi toric varieties

Let P = (P, <) be a finite poset. The order polytope A(P) C R
is defined as follows:

A(P)::{x:(mu)uep Oqungglforallu—<v€P}.

The projective toric variety associated with A(P), i.e.
Pa(p) = Proj C[Cone({1} x A(P)) 1 (Z x Z/*1)] € AP

is called the Hibi toric variety for P.

2 Simple posets

For posets P, and P, the sum P, + P, := P, LU P, is the poset with
the partial order < extended from those on the posets P, P;.

Lemma 2.1. Pap) X Pa(p,) = Pap,+p,)-

The ordinary sum P, & P, := P LU P; is the poset with the partial
order < extended from those on the posets P;, P, and imposing
u=<wvforallue P and v € P,.

Lemma 2.2. 1. A projective join of Hibi toric varieties Pacp,),

PA(PQ) an genera/l ]P)l(A(Pl))_1’ PI(A(P2))_1 C ]P)l(A(Pl))J"Z(A(PQ))_l Z.S

isomorphic to the Hibi toric variety Pap,afo}ap,)-

2. The Hibi toric variety Pacp,op,) s isomorphic to a (special)
hyperplane on Pap,a{o}ep,)-

We call a poset P simple if it is neither P, + P, nor P, & P; for
non-empty posets P; and Ps.

3 Classification

We say that a finite poset P is pure if the length of maximal chains
on P is a constant. For a pure poset P, we denote by hp the length

of maximal chains on P := {6} OPD {T}

There are eight simple pure posets with |P| — hp < 2 upto order
duality, listed in the following table.

posets °

N www i g oy

V | P" G(2,5) LG(3,6) G(2,6) OG(5,10)

Each poset P defines a Gorenstein terminal Hibi toric variety with
—Kp,py = O(hp). Some of them can be regarded as degeneration
limits of linear sections of Fano varieties V' with Picard number one.

Theorem 3.1. There exist 52 distinct simple pure posets with
|P| — hp = 3 upto order duality. Each poset defines a family of
linear section Calabi—Yau threefolds in the Hibi toric variety.

Remark 3.2. These include the case of V' = G(2,7),G(3,6) and a
Schubert variety ¥ C OP?2.

4 Calabi—Yau equations

We consider the diagonal subfamilies of the Batyrev—Borisov mirror
families for linear section Calabi-Yau threefolds X in Hibi toric va-
rieties. Some of them give us the fourth order differential operators
which vanish the period integrals of the diagonal subfamilies.

Example 4.1 (new CYE). In the case of & , o (X) = —54,

D, =0* — 2x(3 + 1960 + 480* + 586° + 3360*)
+ 42 (75 + 3140 + 5270% + 4480° + 1746%)
— 82%(228 + 9530 + 15076% + 10966° + 3320")
+962*(1 + 0)(5 + 60)(7 + 66),

where 6§ = a:di.
X

Example 4.2 (two MUM points). For %% , Xst(X) = —66,

D, =372160* — 612(305 + 18916 + 46770* + 55720 4 30296*)

+ 2%(611586 + 25726750 + 42672280* + 342813260° + 12152150%)

— 812%(37332 + 1421916 + 2068076 + 1401786° + 393706%)
+ 65612 (558 + 22416 + 335660° + 22300° + 5666*)
— 1594323z° (1 + 6)*.

Conjecture 4.3. If there exists the Calabi—Yau operator, the linear
section Calabi—Yau threefolds in Hibi toric variety can be deformed
into a smooth Calabi—Yau threefold.

5 Non-simple posets

The Hadamard product of two differential equations with power
series solutions around z = 0 given by > A,2" and ) B,a" is
the equation that has ) A, B,x" as its power series solution.

Proposition 5.1. If the Calabi—Yau operator exists for P, ® Ps,
it becomes the Hadamard product of those for the posets P, and
Py with the power series solutions corresponding to the mon-
odromy invariant periods.

Example 5.2 (direct sum). In the case of V. v=03x03

D, =250* — 202(5 + 300 + 7267 4 846° 4 366*)
— 162 (=35 — 700 + 716* + 2686° + 1816%)
+ 2562°(1 + 0)(165 + 3750 + 2480% + 376°)
+ 10242*(59 + 2326 + 3316* + 1986° + 396*)
+ 32768z (1 + 6)*.

Example 5.3 (projective join). In the case of g , the linear sec-

tion Calabi-Yau threefold can be deformed into a complete inter-
section of two Grassmannians, G(2,5) N G(2,5) C PY.



