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1 Hibi toric varieties

Let P = (P,≺) be a finite poset. The order polytope ∆(P ) ⊂ R|P |

is defined as follows:

∆(P ) :=
{
x = (xu)u∈P

∣∣∣ 0 ≤ xu ≤ xv ≤ 1 for all u ≺ v ∈ P
}
.

The projective toric variety associated with ∆(P ), i.e.

P∆(P ) := ProjC[Cone({1} ×∆(P )) ∩ (Z× Z|P |)] ⊂ P l(∆(P ))−1

is called the Hibi toric variety for P .

2 Simple posets

For posets P1 and P2, the sum P1 + P2 := P1 ⊔ P2 is the poset with
the partial order ≺ extended from those on the posets P1, P2.

Lemma 2.1. P∆(P1) × P∆(P2) ≃ P∆(P1+P2).

The ordinary sum P1⊕P2 := P1⊔P2 is the poset with the partial
order ≺ extended from those on the posets P1, P2 and imposing
u ≺ v for all u ∈ P1 and v ∈ P2.

Lemma 2.2. 1. A projective join of Hibi toric varieties P∆(P1),

P∆(P2) in general P l(∆(P1))−1,P l(∆(P2))−1 ⊂ P l(∆(P1))+l(∆(P2))−1 is
isomorphic to the Hibi toric variety P∆(P1⊕{o}⊕P2).

2. The Hibi toric variety P∆(P1⊕P2) is isomorphic to a (special)
hyperplane on P∆(P1⊕{o}⊕P2).

We call a poset P simple if it is neither P1 + P2 nor P1 ⊕ P2 for
non-empty posets P1 and P2.

3 Classification

We say that a finite poset P is pure if the length of maximal chains
on P is a constant. For a pure poset P , we denote by hP the length

of maximal chains on P̂ :=
{
0̂
}
⊕ P ⊕

{
1̂
}
.

There are eight simple pure posets with |P | − hP ≤ 2 upto order
duality, listed in the following table.

posets

V Pn G(2, 5) LG(3, 6) G(2, 6) OG(5, 10)

Each poset P defines a Gorenstein terminal Hibi toric variety with

−KP∆(P )
= O(hP ). Some of them can be regarded as degeneration

limits of linear sections of Fano varieties V with Picard number one.

Theorem 3.1. There exist 52 distinct simple pure posets with
|P | − hP = 3 upto order duality. Each poset defines a family of
linear section Calabi–Yau threefolds in the Hibi toric variety.

Remark 3.2. These include the case of V = G(2, 7), G(3, 6) and a

Schubert variety Σ ⊂ OP2.

4 Calabi–Yau equations

We consider the diagonal subfamilies of the Batyrev–Borisov mirror
families for linear section Calabi-Yau threefolds X in Hibi toric va-
rieties. Some of them give us the fourth order differential operators
which vanish the period integrals of the diagonal subfamilies.

Example 4.1 (new CYE). In the case of , χst(X) = −54,

Dx = θ4 − 2x(3 + 19θ + 48θ2 + 58θ3 + 33θ4)

+ 4x2(75 + 314θ + 527θ2 + 448θ3 + 174θ4)

− 8x3(228 + 953θ + 1507θ2 + 1096θ3 + 332θ4)

+ 96x4(1 + θ)2(5 + 6θ)(7 + 6θ),

where θ = x d
dx
.

Example 4.2 (two MUM points). For , χst(X) = −66,

Dx =3721θ4 − 61x(305 + 1891θ + 4677θ2 + 5572θ3 + 3029θ4)

+ x2(611586 + 2572675θ + 4267228θ2 + 3428132θ3 + 1215215θ4)

− 81x3(37332 + 142191θ + 206807θ2 + 140178θ3 + 39370θ4)

+ 6561x4(558 + 2241θ + 3356θ2 + 2230θ3 + 566θ4)

− 1594323x5(1 + θ)4.

Conjecture 4.3. If there exists the Calabi–Yau operator, the linear
section Calabi–Yau threefolds in Hibi toric variety can be deformed
into a smooth Calabi–Yau threefold.

5 Non-simple posets

The Hadamard product of two differential equations with power
series solutions around x = 0 given by

∑
n Anx

n and
∑

n Bnx
n is

the equation that has
∑

n AnBnx
n as its power series solution.

Proposition 5.1. If the Calabi–Yau operator exists for P1⊕P2,
it becomes the Hadamard product of those for the posets P1 and
P2 with the power series solutions corresponding to the mon-
odromy invariant periods.

Example 5.2 (direct sum). In the case of , V = Q3 ×Q3.

Dx =25θ4 − 20x(5 + 30θ + 72θ2 + 84θ3 + 36θ4)

− 16x2(−35− 70θ + 71θ2 + 268θ3 + 181θ4)

+ 256x3(1 + θ)(165 + 375θ + 248θ2 + 37θ3)

+ 1024x4(59 + 232θ + 331θ2 + 198θ3 + 39θ4)

+ 32768x5(1 + θ)4.

Example 5.3 (projective join). In the case of , the linear sec-

tion Calabi–Yau threefold can be deformed into a complete inter-
section of two Grassmannians, G(2, 5) ∩G(2, 5) ⊂ P9.


