Calabi－Yau 超曲面の幾何転移

（based on arXiv：2207．01632）

三浦 真人

京都大学 数理解析研究所
日本数学会2022年度 秋季総合分科会 2022年9月15日

Calabi－Yau 多様体の地誌学（geography）

目標：2つの観察と主定理を紹介。

定義 1

高々標準特異点を持つような正規射影代数多様体 Y であっ て， $K_{Y}=0$ かつ $H^{i}\left(Y, \mathcal{O}_{Y}\right)=0(0<i<\operatorname{dim} Y)$ を満たすものを Calabi－Yau多様体という。

とくに，複素3次元非特異 Calabi－Yau 多様体に興味がある。
Calabi－Yau多様体の地誌学に関する 3 つの重要問題：

- 変形族は有界か？
- 幾何転移を介して連結になるか？（Reid＇s fantasy）

$$
Y \rightarrow \bar{Y} \sim Y^{\prime} \quad \text { (以下, } \mathcal{Y} \rightarrow \mathcal{Y}^{\prime} \text { と略記) }
$$

－ミラー対称性 $Y \leftrightarrow Y^{\vee}$ は成立するか？

$$
\mathcal{Y} \rightarrow \mathcal{Y}^{\prime} \leftrightarrow \mathcal{Y}^{\prime N} \rightarrow \mathcal{Y}^{\vee} \text { も期待される。 }
$$

第一の観察：世代数の偶奇

Calabi－Yau 超曲面の Hodge 数（ $h^{1,1}, h^{1,2}$ ）は全て計算されていて，既知の最大のデータベースとなっている（Kreuzer－Skarke＇00）。

$|\chi / 2|=\left|h^{1,1}-h^{2,1}\right|$ が奇数になる確率 p は $1 / e \sim 0.3679$ に近い？

$$
\widehat{p}=\frac{11106}{30108} \sim 0.3689, \text { 標準誤差 } \sigma_{\mathrm{std}}=\sqrt{\frac{\widehat{p}(1-\widehat{p})}{30108}} \sim 0.0027
$$

Calabi－Yau 超曲面（非特異 \＆特異）

定義 2 （Batyrev＇96）

整凸多面体 Δ が，反射的（reflexive）であるとは，双対 Δ^{*} もまた整凸多面体になるときをいう。

4 次元反射的多面体 $\Delta \rightarrow$ toric Fano 多様体 \mathbb{P}_{Δ}
$\rightarrow \mathrm{MPCP}$（maximal projective crepant partial）解消 $X=\widehat{\mathbb{P}}_{\Delta}$
\rightarrow general elephant $Y_{\Delta} \in\left|-K_{X}\right|$ は非特異な Calabi－Yau 多様体

定義 3 （Artebani－Comparin－Guilbot＇16）

有理凸多面体の組（ Δ_{1}, Δ_{2} ）が，葛籠（good pair）であるとは， $\Delta_{1}, \Delta_{2}^{*}$ は内部に原点を含む整凸多面体であり，かつ $\Delta_{1} \subset \Delta_{2}$ を満たすときをいう。（ $\Delta_{1}, \Delta_{2}^{*}$ は ap－反射的というクラスになる。）

4 次元葛籠 $\left(\Delta_{1}, \Delta_{2}\right)$
\rightarrow MPCP 解消 $X=\widehat{\mathbb{P}}_{\Delta_{2}}$ 上の単項式線形系 $L\left(\Delta_{1}\right) \subset\left|-K_{X}\right|$
\rightarrow general な元 $Y_{\Delta_{1}, \Delta_{2}} \in L\left(\Delta_{1}\right)$ は特異な Calabi－Yau 多様体
定義 2 は $\Delta_{1}=\Delta_{2}$ の葛籠に相当。双対：$\left(\Delta_{1}, \Delta_{2}\right) \leftrightarrow\left(\Delta_{2}^{*}, \Delta_{1}^{*}\right)$ ．

Calabi－Yau 超曲面の幾何転移

命題 1 （Fredrickson＇15）

Calabi－Yau 超曲面の定義（定義 2，定義 3）で，MPCP解消 $\widehat{\mathbb{P}}_{\Delta}$ を \mathbb{Q}－分解的端末的 toric双有理モデル $X \rightarrow \widehat{\mathbb{P}}_{\Delta}$ に取り替えても （非特異，特異）Calabi－Yau 多様体 $Y \subset X$ が定義できる。

反射的多面体の包含関係 $\Delta \subset \Delta^{\prime}$
\rightarrow 幾何転移 $\mathcal{Y}_{\Delta} \rightarrow \mathcal{Y}_{\Delta^{\prime}}$ が存在 $: Y_{\Delta} \rightarrow Y_{\Delta, \Delta^{\prime}}$ \＆$Y_{\Delta^{\prime}}$.
さらに，$\Delta \subset \Delta^{\prime}$ は葛籠のカバー関係の列に分解できる：

$\Delta_{i}^{*}, \Delta_{j}^{\prime}$ は一般に反射的ではないが ap－反射的。
包含関係 $\Delta_{i}^{*} \supset \Delta_{i+1}^{*}$ は，MMP の因子収縮 $X_{i} \rightarrow X_{i+1}$ に対応。

第二の観察：地誌学の三位一体（trinity）

3 つの圏（有向グラフ）に密接な関係がある：

頂点	矢印	対象の次元
（ap－）反射的多面体	包含関係	d
toric 多様体	双有理写像	d
Calabi－Yau 超曲面	幾何転移	$d-1$

関係は単純でない。

各圏に MMP と Sarkisov プログラムの対応物があるはず。相対 Picard 数 1 の fibration の構造を持つ Calabi－Yau 多様体が，森ファイバー空間の対応物になるのではないか？（推測）

第二の観察：地誌学の三位一体（trinity）

3 つの圏（有向グラフ）に密接な関係がある：

頂点	矢印	対象の次元
（ap－）反射的多面体	包含関係	d
線織多様体	双有理写像	d
Calabi－Yau 超曲面	幾何転移	$d-1$

関係は単純でない。

各圏に MMP と Sarkisov プログラムの対応物があるはず。相対 Picard 数 1 の fibration の構造を持つ Calabi－Yau 多様体が，森ファイバー空間の対応物になるのではないか？（推測）

第二の観察：地誌学の三位一体（trinity）

3 つの圏（有向グラフ）に密接な関係がある：

頂点	矢印	対象の次元
（ap－）反射的多面体	包含関係	d
線織多様体	双有理写像	d
Calabi－Yau 多様体	幾何転移	$d-1$

関係は単純でない。

各圏に MMP と Sarkisov プログラムの対応物があるはず。相対 Picard 数 1 の fibration の構造を持つ Calabi－Yau 多様体が，森ファイバー空間の対応物になるのではないか？（推測）

主定理（ $d=2$ の場合の三位一体）

定理 2 （ M^{\prime}＇22，一人住まいの改築定理）

任意の反射的多角形の組は，包含関係の列によって繋げられる。
（i．e．，原点のみを内部格子点とする「一人住まい」の整凸多角形）

証明では「良いSarkisov 分解」が存在するという補題を示す。 この補題はCastelnuovo－Noetherの定理 Bir $\mathbb{P}^{2}=\left\langle\right.$ Aut $\left.\mathbb{P}^{2}, \sigma\right\rangle$ の言い換えだとも見なせる（ σ は標準 Cremona変換）。

定理 3 （M＇22，象を背負った版の弱分解定理）

general elephantが楕円曲線であるような射影有理曲面 X_{1}, X_{2} と任意の双有理写像 $X_{1} \rightarrow X_{2}$ に対し，これを分解する爆発•収縮の列があって，general elephantの組はこれに伴う楕円曲線の変形お よび同型な固有変換（i．e．＂幾何転移＂）の列によって繋げられる。

