Calabi-Yau 超曲面の幾何転移

(based on arXiv:2207.01632)

三浦 真人

京都大学 数理解析研究所

日本数学会 2022 年度 秋季総合分科会 2022 年 9 月 15 日

Calabi-Yau 多様体の地誌学(geography)

目標:2つの観察と主定理を紹介。

定義 1

高々標準特異点を持つような正規射影代数多様体 Y であって、 $K_Y = 0$ かつ $H^i(Y, \mathcal{O}_Y) = 0$ $(0 < i < \dim Y)$ を満たすものを Calabi–Yau 多様体という。

とくに、複素 3 次元非特異 Calabi-Yau 多様体に興味がある。

Calabi-Yau 多様体の地誌学に関する3つの重要問題:

- 変形族は有界か?
- 幾何転移を介して連結になるか?(Reid's fantasy)

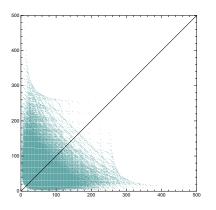
$$Y \to \overline{Y} \leadsto Y'$$
 (以下、 $Y \to Y'$ と略記)

• ミラー対称性 $Y \leftrightarrow Y^{\vee}$ は成立するか?

$$\mathcal{Y} \to \mathcal{Y}' \leftrightarrow \mathcal{Y}'^{\vee} \to \mathcal{Y}^{\vee}$$
 も期待される。

第一の観察:世代数の偶奇

Calabi–Yau 超曲面の Hodge 数 $(h^{1,1}, h^{1,2})$ は全て計算されていて、 既知の最大のデータベースとなっている(Kreuzer–Skarke'00)。



$$|\chi/2| = |h^{1,1} - h^{2,1}|$$
 が奇数になる確率 p は $1/e \sim 0.3679$ に近い?

$$\widehat{
ho} = rac{11106}{30108} \sim 0.3689$$
,標準誤差 $\sigma_{
m std} = \sqrt{rac{\widehat{
ho}(1-\widehat{
ho})}{30108}} \sim 0.0027$

Calabi-Yau 超曲面(非特異 & 特異)

定義 2 (Batyrev '96)

整凸多面体 Δ が、反射的 (reflexive) であるとは、双対 Δ^* もまた整凸多面体になるときをいう。

- 4 次元反射的多面体 Δ → toric Fano 多様体 \mathbb{P}_{Δ}
 - o MPCP(maximal projective crepant partial) 解消 $X=\widehat{\mathbb{P}}_{\Delta}$
 - ightarrow general elephant $Y_\Delta \in |-K_X|$ は非特異な Calabi–Yau 多様体

定義 3 (Artebani–Comparin–Guilbot '16)

有理凸多面体の組 (Δ_1, Δ_2) が、葛籠 (good pair) であるとは、 Δ_1, Δ_2^* は内部に原点を含む整凸多面体であり、かつ $\Delta_1 \subset \Delta_2$ を満たすときをいう。 $(\Delta_1, \Delta_2^*$ は ap-反射的というクラスになる。)

- 4 次元葛籠 (Δ_1, Δ_2)
 - \rightarrow MPCP 解消 $X = \widehat{\mathbb{P}}_{\Delta}$ 。上の単項式線形系 $L(\Delta_1) \subset |-K_X|$
 - \rightarrow general な元 $Y_{\Delta_1,\Delta_2} \in L(\Delta_1)$ は特異な Calabi–Yau 多様体
- 定義 2 は $\Delta_1 = \Delta_2$ の葛籠に相当。 χ 対: $(\Delta_1, \Delta_2) \leftrightarrow (\Delta_2^*, \Delta_1^*)$.

Calabi-Yau 超曲面の幾何転移

命題 1 (Fredrickson '15)

Calabi—Yau 超曲面の定義(定義 2、定義 3)で、MPCP 解消 $\widehat{\mathbb{P}}_{\Delta}$ を \mathbb{Q} -分解的端末的 toric 双有理モデル $X \dashrightarrow \widehat{\mathbb{P}}_{\Delta}$ に取り替えても(非特異、特異)Calabi—Yau 多様体 $Y \subset X$ が定義できる。

反射的多面体の包含関係 $\Delta \subset \Delta'$

 \rightarrow 幾何転移 $\mathcal{Y}_{\Delta} \rightarrow \mathcal{Y}_{\Delta'}$ が存在: $Y_{\Delta} \rightarrow Y_{\Delta,\Delta'} \leftarrow Y_{\Delta'}$.

さらに、 $\Delta \subset \Delta'$ は葛籠のカバー関係の列に分解できる:

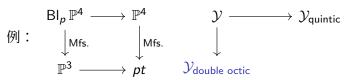
 Δ_i^* , Δ_j' は一般に反射的ではないが ap-反射的。 包含関係 Δ_i^* つ Δ_{i+1}^* は、MMP の因子収縮 $X_i \to X_{i+1}$ に対応。

第二の観察:地誌学の三位一体 (trinity)

3つの圏(有向グラフ)に密接な関係がある:

頂点	矢印	対象の次元
(ap-) 反射的多面体	包含関係	d
toric 多様体	双有理写像	d
Calabi-Yau 超曲面	幾何転移	<i>d</i> − 1

関係は単純でない。



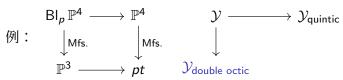
各圏に MMP と Sarkisov プログラムの対応物があるはず。 相対 Picard 数 1 の fibration の構造を持つ Calabi–Yau 多様体が、 森ファイバー空間の対応物になるのではないか?(推測)

第二の観察:地誌学の三位一体 (trinity)

3つの圏(有向グラフ)に密接な関係がある:

頂点	矢印	対象の次元
(ap-) 反射的多面体	包含関係	d
線織多様体	双有理写像	d
Calabi-Yau 超曲面	幾何転移	d-1

関係は単純でない。



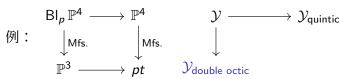
各圏に MMP と Sarkisov プログラムの対応物があるはず。 相対 Picard 数 1 の fibration の構造を持つ Calabi–Yau 多様体が、森ファイバー空間の対応物になるのではないか?(推測)

第二の観察:地誌学の三位一体 (trinity)

3つの圏(有向グラフ)に密接な関係がある:

頂点	矢印	対象の次元
(ap-) 反射的多面体	包含関係	d
線織多様体	双有理写像	d
Calabi-Yau 多様体	幾何転移	d-1

関係は単純でない。



各圏に MMP と Sarkisov プログラムの対応物があるはず。 相対 Picard 数 1 の fibration の構造を持つ Calabi–Yau 多様体が、森ファイバー空間の対応物になるのではないか?(推測)

主定理 (d=2の場合の三位一体)

定理 2 (M '22, 一人住まいの改築定理)

任意の反射的多角形の組は、包含関係の列によって繋げられる。

(i.e., 原点のみを内部格子点とする「一人住まい」の整凸多角形)

証明では「良い Sarkisov 分解」が存在するという補題を示す。 この補題は Castelnuovo–Noether の定理 $\operatorname{Bir} \mathbb{P}^2 = \left\langle \operatorname{Aut} \mathbb{P}^2, \sigma \right\rangle$ の言い換えだとも見なせる(σ は標準 Cremona 変換)。

定理 3 (M '22, 象を背負った版の弱分解定理)

general elephant が楕円曲線であるような射影有理曲面 X_1, X_2 と任意の双有理写像 $X_1 \longrightarrow X_2$ に対し、これを分解する爆発・収縮の列があって、general elephant の組はこれに伴う楕円曲線の変形および同型な固有変換(i.e. "幾何転移")の列によって繋げられる。