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Preface

In this thesis, we study the mirror symmetry for smooth Calabi–Yau 3-folds of Picard

number one which degenerate to a general complete intersection in Hibi toric varieties.

Two new examples of such Calabi–Yau 3-folds Σ(19) and (G(2, 5)2) are our main interest

because of its mirror symmetric property.

In Chapter 1, we collect the basic notations and results on Hibi toric varieties.

Combinatorics of finite posets play an irreplaceable role for descriptions of the geometry

of Hibi toric varieties.

In Chapter 2, we give a brief summary of the theory of toric degenerations. Es-

pecially, we study the Gonciulea–Lakshmibai degenerations [GL] from a viewpoint of

our formulation of Hibi toric varieties.

In Chapter 3, we perform the conjectural mirror construction of smooth Calabi–Yau

3-folds of Picard number one which degenerate to complete intersections in Hibi toric

varieties, based on the conjectural construction of [BCFKvS1] via conifold transition.

We give an expression for the fundamental periods.

In Chapter 4, we study the examples of complete intersections in minuscule Schubert

varieties. Listing all these Calabi–Yau 3-folds up to deformation equivalences, we find

a new example Σ(19), a smooth complete intersection in a locally factorial Schubert

variety Σ of the Cayley plane OP2. We calculate topological invariants of this Calabi–

Yau 3-fold and conjecture that it has a non-trivial Fourier–Mukai partner.

In Chapter 5, we give an idea of regarding a complete intersection of projective

varieties as a complete intersection of hyperplanes in the projective join of the varieties.

We focus on an example (G(2, 5)2), a complete intersection of two Grassmannians G(2, 5)

with general positions in P9. We study the mirror symmetry for this Calabi–Yau 3-fold

and suggest the possibility of a generalization of quantum hyperplane section theorem

for subvarieties of high codimension.

In Appendix, we put the tables of BPS numbers computed using mirror symmetry.
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1
Hibi Toric Varieties

1.1 Order polytopes

Let P = (P,≺) be a finite partially ordered set (or poset for short) and N = ZP, M =

HomZ(N,Z) free abelian groups of rank |P| dual to each other. We denote by NR, MR

the real scalar extensions N ⊗Z R, M ⊗Z R, respectively. We define the order polytope

∆(P) ⊂MR as follows (cf. [Sta]).

∆(P) :=
{
x = (xu)u∈P

∣∣∣∣ 0 ≤ xu ≤ xv ≤ 1 for all u ≺ v ∈ P
}
. (1.1.1)

It is easy to see that ∆(P) is an integral convex polytope of dimension |P|.

Definition 1.1.1. Let P be a finite poset and∆(P) the order polytope for P. The projective

toric variety associated with ∆(P),

P∆(P) := ProjC[Cone(1 × ∆(P)) ∩ (Z ×M)] (1.1.2)

is called the Hibi toric variety for a finite poset P.

Example 1.1.2. If P is a finite totally ordered set, the order polytope ∆(P) is a regular

simplex of dimension |P|. Hence the corresponding Hibi toric varietyP∆(P) is a projective

space of dimension |P|.

Example 1.1.3. Assume that every pair of elements in a finite poset P is incomparable.

In this case, the order polytope ∆(P) is |P|-dimensional hypercube [0, 1]|P|. Then the

corresponding Hibi toric variety P∆(P) is a |P|-times direct product of P1.

Example 1.1.4. One of the simplest examples of order polytopes is the Gelfand–Tsetlin

polytopes for fundamental weights of special linear groups SL(n + 1,C). The Gelfand–

Tsetlin polytope for an integral dominant weight λ = (Λ0, . . . ,Λn) ∈ Zn+1/ ⟨(1, . . . , 1)⟩ is
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defined by the following inequalities in Rn(n+1)/2

Λn ≤ xi+1, j+1 ≤ xi, j ≤ xi, j+1 ≤ Λi for all 0 ≤ i ≤ j ≤ n − 1. (1.1.3)

These inequalities can be represented in a diagram like as Figure 1.1.1 for n = 3.

Λ0

Λ1

Λ2

Λ3

x02

x12

x22

x01

x11

x00

Figure 1.1.1: the Gelfand–Tsetlin polytopes for SL(4,C)

The Gelfand–Tsetlin polytope for a fundamental weight λ = (1, . . . , 1, 0, . . . , 0) is in

fact the order polytope∆(P) for a poset P, whose Hasse diagram has rectangle shape (cf.

§ 1.4). The corresponding Hibi toric variety P∆(P) is the toric variety P(k,n + 1) defined

by [BCFKvS1].

1.2 Homogeneous coordinate rings

To introduce another description of Hibi toric varieties which is standard in literatures,

we should prepare some further definitions. For a poset P, an order ideal is a subset

I ⊂ P with the property that

u ∈ I and v ≺ u imply v ∈ I. (1.2.1)

A lattice L is a poset for which each pair of elements α, β ∈ L has the least upper bound

α ∨ β (called the join) and the greatest lower bound α ∧ β (called the meet) in L. A

distributive lattice is a lattice on which the following identity holds for all triple elements

α, β, γ ∈ L,

α ∧ (β ∨ γ) = (α ∧ β) ∨ (α ∧ γ). (1.2.2)

For a finite poset P, the order ideals of P form a distributive lattice J(P) with the partial

order given by set inclusions. The join and the meet on J(P) correspond to the set union

and the set intersection, respectively. An example of a finite poset P and the distributive

lattice J(P) is depicted in Figure 1.2.1 using the Hasse diagram of posets (cf. § 1.4).
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P

←→

J(P)

Figure 1.2.1: Hasse diagrams of P and J(P)

Let J(P) be the distributive lattice of order ideals of a finite poset P. Denote byC[J(P)]

the polynomial ring over C in |J(P)| indeterminates pα (α ∈ J(P)). Let I(J(P)) ⊂ C[J(P)]

the homogeneous ideal generated by the following binomial relations:

pτpϕ − pτ∧ϕpτ∨ϕ (τ / ϕ), (1.2.3)

where τ / ϕ denotes the pair of elements τ, ϕ ∈ J(P) incomparable. One can check

that the graded algebra AJ(P) := C [J(P)] /I(J(P)) with the standardN-grading inherited

from C [J(P)] coincides with the homogeneous coordinate ring of the Hibi toric variety

P∆(P) with the embedding defined by the very ample line bundle associated with the

order polytope ∆(P). The graded algebra AJ(P) is usually called the Hibi algebra on the

distributive lattice J(P) (cf. [Hib]).

Remark 1.2.1. One may define the Hibi algebra AL for not only J(P) but also any finite

distributive lattice L. In fact, it does not make differences because of the Birkhoff

representation theorem in the following. Let L be a finite lattice. It is easy to see that

L has the unique maximal and minimal element with respect to the partial order on L.

An element α ∈ L is said to be join irreducible if α is neither the minimal element nor the

join of a finite set of other elements.

Theorem 1.2.2 (cf. [Bir]). Let P be a finite poset and J(P) the distributive lattice of order ideals

of P. The full subposet of join irreducible elements of J(P) coincides with P as a poset. This

gives a one-to-one correspondence between finite posets and finite distributive lattices.

As an example of this correspondence, a circled vertex of J(P) in Figure 1.2.1 repre-

sents a join irreducible element of J(P), i.e., the vertex with exactly one edge below. We

can easily reconstruct the poset P as the set of circled vertices with the induced order

in J(P).

Example 1.2.3. Let P be a finite poset and P∗ = P ∪
{
1̂
}

the poset with extended partial

order on P with u ≺ 1̂ for all u ∈ P. The Hibi toric variety P∆(P∗) is a projective cone over
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P∆(P) inP|J(P)|. In fact, the variable p1̂ in the homogeneous coordinate ring AJ(P∗) does not

involve in any relation pτpϕ − pτ∧ϕpτ∨ϕ (τ / ϕ).

1.3 Projective joins

We give a generalization of the projective cone given in Example 1.2.3. First, let us

recall the definition of projective joins of projective varieties.

Definition 1.3.1. Let V1 ⊂ Pn
1 and V2 ⊂ Pm

2 be projective varieties in projective subspaces

Pn
1 ,P

m
2 ⊂ Pn+m+1 with general positions. The projective join J(V1,V2) of V1 and V2 is the

union of all projective lines in Pn+m+1 passing through a point of V1 and a point of V2.

It is natural to introduce the combinatorial analogue of this notion.

Definition 1.3.2. (1) Let ∆1 and ∆2 be integral convex polytopes in M1
R and M2

R,

respectively. The projective join J(∆1,∆2) of ∆1 and ∆2 is the convex hull of the sets

(0,∆1, 0) and (1, 0,∆2) in R ⊕M1
R ⊕M2

R, where 0 ∈M j
R

is the origin for j = 1, 2.

(2) Let P1 and P2 be finite posets. The projective join J(P1,P2) of P1 and P2 is the poset

P1 ∪ P2 ∪ {o}with the partial order ≺ extended from those on P1 and P2 by adding

u ≺ o ≺ v for all u ∈ P1 and v ∈ P2.

An example of the projective join J(P,P) of finite posets P is depicted in Figure 1.3.1,

again using the Hasse diagram of posets. The Hasse diagram of P is shaped like a

rectangle and the middle vertex corresponds to the additional element o. Note that the

definition of the projective join J(P1,P2) is not symmetric for P1 and P2.

o

Figure 1.3.1: Projective join J(P,P)

Lemma 1.3.3. Under the notations in Definition 1.3.1, it holds that

(1) PJ(∆1,∆2) ≃ J(P∆1 ,P∆2),

(2) ∆(J(P1,P2)) ≃ J(∆(P1),∆(P2)).

4



Proof. (1) It is easy to see that the homogeneous coordinate ring of J(P∆1 ,P∆2) is

isomorphic to that of PJ(∆1,∆2) by considering the polynomial relations in two

kinds of variables corresponding to the coordinates on projective subspaces Pn
1

and Pm
2 .

(2) The claim follows from the fact that ∆(J(P1,P2)) is a convex hull of sets (0,∆(P1), 0)

and (1, 1,∆(P2)), where 1 ∈ M1
R is the point with all xu = 1 and 0 ∈ M2

R is the

origin. In fact, every point (xo, (xu), (xv)) ∈ ∆(J(P1,P2)) is contained in a segment

of the end points (0, ( xu−xo
1−xo

), 0) and (1, 1, ( xv
xo

)) ∈ ∆(J(P1,P2)).

�

Remark 1.3.4. Although the definition of J(P1,P2) is not symmetric for P1 and P2, the

order polytope ∆(J(P1,P2)) is defined in a symmetric way up to unimodular transfor-

mations as we see from Lemma 1.3.3 (2) or the proof of it.

Corollary 1.3.5. Let P1 and P2 be finite posets. The Hibi toric variety P∆(J(P1,P2)) is isomorphic

to the projective join J(P∆(P1),P∆(P2)) of Hibi toric varieties P∆(P1), P∆(P2).

1.4 Invariant subvarieties

A nice property of Hibi toric varieties is that torus invariant subvarieties in Hibi toric

varieties are also Hibi toric varieties. Before we see this, let us introduce some further

combinatorial definitions.

For a finite poset P and a pair of elements u, v ∈ P, we say that u covers v if u ≻ v and

there is no w ∈ P with u ≻ w ≻ v. The Hasse diagram of a poset P is the oriented graph

with vertex set P, having an edge e = {u, v} going down from u to v whenever u covers

v in P. Denote that the source s(e) = u and the target t(e) = v for an edge e = {u, v} of the

Hasse diagram of P if u covers v. Let us define the poset P̂ := P ∪
{
0̂, 1̂

}
by extending

the partial order on P with 0̂ ≺ u ≺ 1̂.

The defining inequalities of an order polytope ∆(P) are generated by xs(e) ≥ xt(e) for

all e ∈ E, where E is the set of edges of the Hasse diagram of P̂ = P∪
{
0̂, 1̂

}
and x0̂ = 0 and

x1̂ = 1. We can get a face of ∆(P) by replacing some of these inequalities with equalities

as we see below. Recall that a full subposet y ⊂ P̂ is a subset of P̂ whose poset structure

is that inherited from P̂. We call a full subposet y ⊂ P̂ connected if all the elements in y

are connected by edges in the Hasse diagram of y, and convex if u, v ∈ y and u ≺ w ≺ v

imply w ∈ y.
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Definition 1.4.1. Let P be a finite poset and P̂ = P ∪
{
0̂, 1̂

}
. A surjective map f from

P̂ to a finite set P̂′ = P ∪
{
0̂, 1̂

}
is called a contraction of P̂ if every fiber f −1(i) (i ∈ P̂′) is

connected full subposet of P̂ not containing both 0̂ and 1̂, and the following condition

holds for all uk, vk ∈ f −1(k) and i , j ∈ P̂′:

a relation ui ≺ u j implies vi � v j.

Remark 1.4.2. A contraction f : P̂ → P̂′ gives a natural partial order on the image set

P̂′, i.e. the partial order generated by the following relations:

i ≺ j⇔ there exist u ∈ f −1(i) and v ∈ f −1( j) such that u ≺ v in P̂.

Further, P̂′ turns out to be a so-called bounded poset by setting 1̂ ∈ f −1(1̂) and 0̂ ∈ f −1(0̂).

Hence in fact, the above definition of contraction coincides with the more abstract

definition in [Wag]; the fiber-connected tight surjective morphism of bounded posets.

For a contraction f : P̂→ P̂′, the corresponding face of ∆(P) is given by

θ f :=
{

x ∈ ∆(P)

∣∣∣∣∣∣ xu = xv for all u, v ∈ f −1(i) and i ∈ P̂′
}
. (1.4.1)

Conversely, we can reconstruct the contraction from each face θ f ⊂ ∆(P) by looking at

the coordinates of general point in θ f . Now we can rephrase the classical fact on the

face structure of order polytopes in our terminology (cf. [Wag, Theorem 1.2]).

Proposition 1.4.3. Let P be a finite poset, and ∆(P) the associated order polytope. The above

construction gives a one-to-one correspondence between the faces of ∆(P) and the contractions

of P̂. Moreover, an inclusion of the faces corresponds to a composition of contractions.

Remark 1.4.4. It is obvious that the faceθP̂→P̂′ ⊂ ∆(P) coincides with the |P′|-dimensional

order polytope ∆(P′) under a suitable choice of subspace of MR and a unimodular

transformation. This means that the torus invariant subvarieties in Hibi toric varieties

are also Hibi toric varieties as noted before.

Finally, we note on divisors on a Hibi toric variety P∆(P). Weil and Cartier divisors

are naturally described in terms of the poset P. In fact, prime invariant Weil divisors

correspond to the set of edges E of the Hasse diagram of P̂ from Proposition 1.4.3. It

is elementary to show that the divisor class group Cl(P∆(P)) is a free Z-module of rank

|E| − |P| and the Picard group Pic(P∆(P)) is a free Z-module whose rank coincides with

the number of connected components of the Hasse diagram of P.
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1.5 Singular loci

Let P be a finite poset. A chain of length k in P is a sequence of elements u0 ≺ u1 ≺ · · · ≺
uk ∈ P for 1 ≤ i ≤ k. A chain is called maximal if there is no v ≺ u0 or w ≻ uk in P and

ui covers ui−1 for all 1 ≤ i ≤ k. We call a finite poset P is pure if every maximal chain

has the same length. We have some known useful results on singularities of Hibi toric

varieties.

Proposition 1.5.1 ([HH, Remark 1.6 and Lemma 1.4]). Let P be a finite poset. The Hibi

algebra AJ(P) is Gorenstein if and only if P is pure. In this case the Hibi toric variety P∆(P) is a

Gorenstein Fano variety with at worst terminal singularities.

Theorem 1.5.2 ([Wag, Theorem 2.3 and Proof of Corollary 2.4]). Let P∆(P) be a Hibi toric

variety for a finite poset P. A face θ f ⊂ ∆(P) corresponds to an irreducible component of the

singular loci of P∆(P) if and only if one of the fibers f −1(i) of the contraction f : P̂ → P̂′ is a

minimal convex cycle in the Hasse diagram of P̂ and all other fibers f −1( j) ( j , i) consist of one

element.

1.6 Gorenstein Hibi toric varieties

We give some further preliminary results for Gorenstein Hibi toric varieties, which are

particularly important for our purpose. A finite poset P has a height function h by

defining h(u) to be the length of the longest chain bounded above by u in P̂ = P∪
{
0̂, 1̂

}
.

We define the height hP of P as h(1̂). For example, hP = 9 for the pure poset P in Figure

1.2.1.

Suppose that P is pure and J(P) the associated distributive lattice of order ideals of

P. The associated Hibi toric varietyP∆(P) ⊂ ProjC[J(P)] is Gorenstein (Proposition 1.5.1)

with the anticanonical sheaf −KP∆(P) = O(hP). In fact, for prime invariant Weil divisors

De(e ∈ E) on P∆(P), a linear equivalence is generated by the relations∑
s(e)=u

De ≃
∑

t(e)=u

De, (1.6.1)

for each u ∈ P and O(DEk) coincides with O(1) for each Ek := {e ∈ E | h(s(e)) = k} and

DEk :=
∑

e∈Ek De for k = 1, . . . , hP.

Let us define ∆ :=
∑

u∈P h(u)χu − hP∆(P), a polytope corresponding to the anticanon-

ical sheaf −KP∆(P) = O(DE) = O(hP) containing the origin 0 ∈ MR as an internal integral

7



point. Since P∆(P) is Gorenstein, ∆ turns out to be a reflexive polytope, i.e., it contains

the unique internal integral point 0 and every facet has integral distance one to 0 [Bat1,

Theorem 4.1.9]. We remark that the polar dual polytope ∆∗ ⊂ NR of ∆ also has a

good description [BCFKvS2] [HH]. The abelian groups ZP̂ = N ⊕ Z
{
0̂, 1̂

}
and ZE,

respectively, may be viewed as the groups of 0-chains and 1-chains of the natural chain

complex associated with the Hasse diagram of P̂. The boundary map in the chain

complex is

∂ : ZE −→ ZP̂, e 7→ t(e) − s(e). (1.6.2)

We also consider the projection pr1 : ZP̂→ N and the composed map

δ := pr1 ◦ ∂ : ZE −→ N. (1.6.3)

The dual polytope ∆∗ coincides with the convex hull of the image δ(E) ⊂ NR. Further,

the linear map δ gives a bijection between E and the set of vertices in ∆∗.

8



2
Toric Degenerations

2.1 Generalities on toric degenerations

We follows the formulation by [CHV] and [And] [Kav]. Let A be aC-algebra and (Zn, <)

a totally ordered group, i.e., < is a total order on a free abelian groupZn such that a < b

implies a+ c < b+ c for all a, b, c ∈ Zn. AZn-filtration F on A is a family of C-subspaces

FaA ⊂ A (a ∈ Zn) satisfying the following four conditions:

(1) FaA ⊂ FbA (for all a < b),

(2)
∪

a∈Zn FaA = A,

(3) (FaA)(FbA) ⊂ Fa+bA (for all a, b ∈ Zn) and

(4) 1 ∈ F0A \ F<0A.

Suppose that A =
⊕∞

k=0 Ak is a graded C-algebra with A0 = C and dim Ak < ∞ for

all k ∈ N. A graded Zn-filtration on A is a Zn-filtration compatible with the grading,

i.e., FaA ∩ Ak , ∅ ⇒ Al ⊂ FaA for all l < k. Denote by the same symbol F the

(Z ×Zn)-filtration on A defined as F(k,a)A := FaA ∩ ⊕
⊕

l≤k Al with the total order < on

Z×Zn lexicographically extended from that onZn. For any nonzero f ∈ A, there is the

smallest a ∈ Zn (called the order of f and denoted by ordF f ) such that f ∈ FaA. It holds

that 0 ≤ ordF f ∈N×Zn for all 0 , f ∈ A. We may define the associated (N×Zn)-graded

algebra of A as

grF A =
⊕

(k,a)∈N×Zn

F(k,a)A/F<(k,a)A. (2.1.1)

As [Cal, § 3.2] [AB, Proposition 2.2] [And, Proposition 5.1], one can prove the following.

9



Proposition 2.1.1. Let (Zn, <) be a totally ordered group, A a graded C-algebra with A0 = C

and dim Ak < ∞ for all k ∈ N and F a graded Zn-filtration on A. Assume that grF A is

finitely generated. Then there is a finitely generated flat graded C[t]-algebra A ⊂ A[t] such

that

(1) A/tA ≃ grF A, and

(2) A[t−1] ≃ A[t, t−1] as C[t, t−1]-algebras.

Geometrically, Proposition 2.1.1 says there is a projective flat family ProjA → C
with general fiber isomorphic to Proj A and special fiber Proj(grF A).

Corollary 2.1.2 (Toric degeneration). Let (Zn, <) be a totally ordered group and A a

graded C-algebra with a graded Zn-filtration F with one-dimensional leaves, i.e., for all

(k, a) ∈ N × Zn, dimF(k,a)A/F<(k,a)A ≤ 1. Assume that grF A is a finitely generated in-

tegral domain. Then grF A is a semigroup ring C[Γ] associated with the semigroup Γ :={
(k, a) | dimF(k,a)A/F<(k,a)A = 1

}
⊂ N × Zn and the projective variety Proj A degenerates to

the projective toric variety Proj(grF A).

2.2 Standard monomial basis

Let A be a graded C-algebra and C
[
p
]

be a polynomial ring in n indeterminates p j ( j =

1, . . . , n) with standard grading. Assume that there exists a surjective homomorphism

ϕ : C
[
p
] → A as graded C-algebras, i.e., A ≃ C [

p
]
/I where I := kerϕ a homogeneous

ideal. A C-basis of A represented as a certain set of monomials in C
[
p
]

is called a

standard monomial basis of A if it exists.

Example 2.2.1. Let ≺ be a term order on C[p] and denote by in≺ f the initial term of

f ∈ C[p] with respect to ≺. The initial ideal in≺I of an ideal I ⊂ C[p] is defined as a

C-space in≺I := C
{
in≺ f | f ∈ I

}
. Then the set

{
pm < in≺I

}
is called a standard monomial

basis of A = C[p]/I with respect to ≺. In fact, it is a C-basis of A because every nonzero

polynomial r(p) ∈ I includes a term in in≺I and the reduction algorithm works.

Example 2.2.2. Let P be a finite poset, J(P) the distributive lattice of order ideals of

P and A a graded C-algebra. Assume that there exists a surjective homomorphism

ϕ : C[J(P)] → A as graded C-algebras, where C[J(P)] is a polynomial ring in |J(P)|
indeterminates pα (α ∈ J(P)). Then the set

{
pτ1pτ2 · · · pτr + I | τ1 ≼ τ2 ≼ · · · ≼ τr

}
is called

standard monomial basis of A with respect to J(P) if it is a C-basis of A.

10



2.3 Gonciulea–Lakshmibai degenerations

We recall the result of Gonciulea and Lakshmibai [GL] as an important example of toric

degenerations. We give a simple proof of this theorem in our terminology.

Theorem 2.3.1 ([GL]). Let P be a finite poset and A ≃ C[J(P)]/I a graded C-algebra which

has a standard monomial basis with respect to J(P) in the sense of Example 2.2.2. Assume that

the homogeneous ideal I is generated by the following relations:

pτpϕ − pτ∧ϕpτ∨ϕ +
∑
α≺τ∧ϕ
τ∨ϕ≺β

cαβpαpβ (2.3.1)

for all τ / ϕ. Then the variety Proj A degenerates to the Hibi toric variety P∆(P).

Proof. We construct a M ≃ Z|P|-filtration F on A by setting:

ordF (pτ1pτ2 · · · pτr + I) :=
r∑

i=1

χ(τi) (for all τ1 ≼ τ2 ≼ · · · ≼ τr ∈ J(P)), (2.3.2)

where χ(τ) :=
∑

v∈τ(δuv)u∈P and we take a reverse lexicographic order on M for a linear

extension of the partial order ≺ on P. We verify the four axioms of filtration and that it

becomes a graded M-filtration. The value of ordF are all different for distinct standard

monomials because we can always recover all τi =
{
d ∈ P | ordF (pτ1pτ2 · · · pτr + I)(d) ≤ i

}
from that value. In addition we can check ordF (pαpβ) ≺ ordF (pτ∧ϕpτ∨ϕ) for all α ≺ τ∧ϕ
and τ ∨ ϕ ≺ β directly from the definition of the order on M. Then we conclude

grF A ≃ AJ(P) and the claim from Corollary 2.1.2. �

Many studies on the standard monomial theory for flag varieties and Schubert

varieties often give examples which can be applied Theorem 2.3.1. For instance, the

standard monomial theory for the so-called minuscule Schubert varieties [LMS] gives

an examples. The terminology in the following theorem will be introduced in § 4.

Theorem 2.3.2 ([GL]). A minuscule Schubert variety X(w) degenerates to the Hibi toric

variety P∆(Pw), where Pw is the minuscule poset for X(w).

We give a corollary in another direction.

Corollary 2.3.3. Let P1,P2 be finite posets and A1 ≃ C[J(P1)]/I1,A2 ≃ C[J(P2)]/I2 be C-

graded algebras satisfying the assumptions in Theorem 2.3.1, respectively. Then the projective

join J(Proj A1,Proj A2) degenerates to the Hibi toric variety P∆(J(P1,P2)) ≃ J(P∆(P1),P∆(P2)) (cf.

Corollary 1.3.5).

11



Proof. It is easy to check that the homogeneous coordinate ring A ≃ C[J(P1,P2)]/I

of J(Proj A1,Proj A2) satisfies all assumptions in Theorem 2.3.1 because the ideal I ⊂
C[J(P1,P2)] is generated by generators of the ideals I1 ⊂ C[J(P1)] and I2 ⊂ C[J(P2)]

regarded as elements in C[J(P1,P2)]. �
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3
Mirror Symmetry

3.1 Batyrev–Borisov construction

First we apply the Batyrev–Borisov mirror construction [Bat1] [Bor] to Calabi–Yau

complete intersections in Gorenstein Hibi toric varieties. Let P be a finite pure poset

and N = ZP and M = Hom(N,Z) dual free abelian groups as before. The order polytope

∆(P) ⊂ MR is a |P|-dimensional integral polytope associated with the hyperplane class

on the Gorenstein Hibi toric variety P∆(P). We use the same notations as in § 1.6,

a reflexive polytope ∆ =
∑

u∈P h(u)χu − hP∆(P) ⊂ MR, the polar dual polytope ∆∗ =

Conv δ(E) ⊂ NR, Weil divisors DE′ =
∑

e∈E′ De (E′ ⊂ E) and so on.

Let X0 ⊂ P∆(P) be a general Calabi–Yau complete intersection of degree (d1, . . . , dr)

with respect to O(1). That is, d1, . . . , dr satisfies
∑r

j=1 d j = hP. We choose a nef-partition

of ∆, a special kind of Minkowski sum decomposition ∆ = ∆1 + · · · + ∆r of ∆, in the

following specific way. Define subsets E j of edges in E as

E j =

d1+···+d j∪
k=d1+···+d j−1+1

Ek, (3.1.1)

where Ek = {e ∈ E | h(s(e)) = k}. It turns out that O(DE j) = O(d j) and a nef-partition is

obtained from E = E1 ∪ E2 ∪ · · · ∪ Er. Define ∇ j = Conv({0}, δ(E j)) and the Minkowski

sum ∇ = ∇1 + · · · + ∇r ⊂ NR. From [Bor], it holds that

∆∗ = Conv(∇1, . . . ,∇r), ∇∗ = Conv(∆1, . . . ,∆r) and ∆ = ∆1 + · · · + ∆r, (3.1.2)

where ∆ j is the integral polytope in MR defined by
⟨
∆i,∇ j

⟩
≥ −δi j. The explicit expres-
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sions of ∆ j and ∇∗ are as follows:

∆ j = d j1 −
d j∑

i=1

χd1+···+d j−1+i − d j∆(P) = Conv

d jχ(τ) −
d j∑

i=1

χd1+···+d j−1+i

∣∣∣∣∣∣ τ ∈ J(P)

 , (3.1.3)

∇∗ = Conv

d jχ(τ) −
d j∑

i=1

χd1+···+d j−1+i

∣∣∣∣∣∣ τ ∈ J(P), 1 ≤ j ≤ r

 , (3.1.4)

where χ j := χ(τ j) =
∑

v∈τ j
(δuv)u∈P with τ j :=

{
u ∈ P | h(u) < j

}
.

Now we introduce the Batyrev–Borisov mirror of Y = X̂0, the strict transform of

X0 in a MPCP-resolution P̂∆(P) of P∆(P) defined by [Bat1]. The mirror of Y ⊂ P̂∆(P) is

birational to the set given by the following equations in torus (C∗)|P|:

f̃ j = 1 − (
∑
e∈E j

aetδ(e)) = 0 (for all 1 ≤ j ≤ r), (3.1.5)

where each ae ∈ C is a parameter. Further, the precise mirror Calabi–Yau variety Y∗ of

Y is obtained as the closure of the above set in MPCP-resolution P̂∇ of P∇.

The mirror Y∗ ⊂ P̂∇ actually has the expected stringy (or string-theoretic) Hodge

numbers as proved in [BB1, BB2] and is smooth in 3-dimensional case. The stringy

Hodge numbers of X0 coincide with the usual Hodge numbers of Y if there exists a

crepant resolution Y → X0. Applying their formula for stringy (1, ∗)-Hodge numbers

to the case of Calabi–Yau complete intersections X0 in Gorenstein Hibi toric varieties

P∆(P), we obtain the following convenient expressions in terms of the poset P.

Theorem 3.1.1 (cf. [BB1, Proposition 8.6]). The stringy (1, ∗)-Hodge numbers of a general

Calabi–Yau complete intersections X0 of degree (d1, . . . , dr) in a Gorenstein Hibi toric variety

P∆(P) are given by the following formulae

h1,1
st (X0) = |E| − |P|, h1,k

st (X0) = 0 (1 < k < |P| − r − 1),

h1,|P|−r−1
st (X0) =

∑
i∈I

∑
J⊂I

(−1)|J|l
(
(di − dJ)∆(P)

) −∑
J⊂I

(−1)r−|J|
∑

e∈E
l∗(dJθe)

 − |P|, (3.1.6)

where I = {1, . . . , r}, dJ :=
∑

j∈J d j and θe is the facet of P corresponding to the edge e ∈ E. The

nonzero contributions in the first term of h1,|P|−r−1
st (X0) comes only from the range of di − dJ ≥ 0

and in the second term from that of dJ = hP − 1 or hP.
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3.2 Constructions via conifold transitions

Let X be a smooth Calabi–Yau 3-fold of Picard number one degenerating to a general

complete intersection X0 in a Gorenstein Hibi toric variety P∆(P) with a finite connected

pure poset P. Now we explain the conjectural mirror construction of X via conifold

transition proposed by [BCFKvS1] [Bat2].

A conifold transition of a smooth Calabi–Yau 3-fold X is the composite operation of a

flat degeneration of X to X0 with finitely many nodes and a small resolution Y→ X0. The

conjecture proposed in [BCFKvS1] is that the mirror Calabi–Yau 3-folds Y∗ and X∗ are

again related in the same way. The construction is depicted as the following diagram,

Figure 3.2.1. In the diagram, dashed and solid arrows represent flat degenerations and

small contraction morphisms, respectively.

X

X0

Y Y∗

Y∗0

X∗

Figure 3.2.1: Mirror symmetry and conifold transitions

In our case, a general complete intersection X0 in a Gorenstein Hibi toric variety

P∆(P) has at worst finitely many nodes because of a Bertini type theorem for toroidal

singularities. In fact, we know that three dimensional Gorenstein terminal toric singu-

larities are at worst nodes. Thus we always obtain a conifold transition Y of X which is

a smooth Calabi–Yau complete intersection in a MPCP resolution P̂∆(P) of P∆(P) and can

use the Batyrev–Borisov mirror Y∗ in § 3.1.

By an argument in [Bat2] on generalized monomial-divisor correspondence, there

is a natural specialization Y∗0 of the family of Y∗ to get the mirror of X. That is,

the specialized parameter (ae)e∈E should be Σ(∆∗)-admissible, i.e., there exists a Σ(∆∗)-

piecewise linear function ϕ : NR → R corresponding to a Cartier divisor on X such

that ϕ ◦ δ(e) = log |ae|. In all our case, PicP∆(P) ≃ Pic X ≃ Z holds. Then we can simply

specialize the family to be diagonal, i.e., setting all the coefficients ae to be a same

parameter a. Now we repeat the conjecture of [BCFKvS1].

Conjecture 3.2.1 ([BCFKvS1, Conjecture 6.1.2]). Let p be a number of nodes on a Calabi–Yau

3-fold X0 ⊂ P∆(P). We define a one parameter family of affine complete intersections in (C∗)|P|
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by the following equations:

f j = 1 − a(
∑
e∈E j

tδ(e)) = 0 (for all 1 ≤ j ≤ r). (3.2.1)

The closure Y∗0 of the above set in a MPCP-resolution P̂∇ has p nodes, and there are (|E|−|P|−p−1)

relations between the homology classes of p vanishing 3-cycles on Y∗ shrinking to nodes in Y∗0
for general a. A small resolution X∗ → Y∗0 is a mirror manifold of X with the correct Hodge

numbers, hi, j(X∗) = h3− j,i(X).

Remark 3.2.2. In the case of smoothing of 3-dimensional Calabi–Yau hypersurfaces in

Gorenstein Hibi toric varieties, we can see Conjecture 3.2.1 holds by the same argument

as in [BCFKvS1] [BK], i.e., in fact the polar duality of faces gives a one-to-one correspon-

dence between singular P1 ⊂ P∆(P) and torus invariant P1 × P1 ⊂ P∆∗ which intersect

non-transversally with the closure of the set { f1 = 0}. Further the MPCP-resolution

P̂∆∗ → P∆∗ increases them by hP = deg X times.

In general, the existence of a smooth mirror X∗ is still an open problem. In the

remaining part, we refer to not only X∗ but also Y∗0 as a conjectural mirror of X.

3.3 Fundamental period

We derive the explicit form of the fundamental period for the conjectural mirror family

of X. Obviously, the coordinate transformation tu → ζhutu gives aZhP-symmetry a→ ζa

in the family in Conjecture 3.2.1, where ζ = e2π
√
−1/hP . Therefore we should take x := ahP

as a genuine moduli parameter. The fundamental period ω0(x) of the mirror family is

defined by integration of the holomorphic (|P| − r)-formΩx on a (real) torus cycleT that

vanishes at x = 0. By residue theorem, we get the following formula up to the constant

multiplication,

ω0(x) =
∫
T

Ωx =
1

(2π
√
−1)|P|

∫
|tu |=1

1∏r
j=1 f j

|P|∏
i=1

dti

ti

=

∞∑
m=0

ahPm 1

(2π
√
−1)|P|

∫
|tu|=1

r∏
j=1

(
∑
e∈E j

tδ(e))d jm
|P|∏
i=1

dti

ti

=

∞∑
m=0

xm#

ϕ :
r∪

j=1

J j(m)→ E

∣∣∣∣∣∣ ϕ(J j(m)) ⊂ E j,
∑

s(e)=u

ϕ−1(e) =
∑

t(e)=u

ϕ−1(e)


=

∞∑
m=0

xm

∏r
j=1(d jm)!

m!hP
#

ψ :
hP∪

k=1

Jk(m)→ E

∣∣∣∣∣∣ ψ(Jk(m)) ⊂ Ek,
∑

s(e)=u

ψ−1(e) =
∑

t(e)=u

ψ−1(e)

 ,
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where J j(m) :=
{
( j, i) ∈N2 | 1 ≤ i ≤ d jm

}
and Jk(m) :=

{
(k, i) ∈N2 | 1 ≤ i ≤ m

}
.

In the case that the Hasse diagram of P (and hence P̂) is a plane graph, we can

go further like [BCFKvS2]. This is originally formulated in the work of Bondal and

Galkin [BG] for the Landau–Ginzburg mirror of minuscule homogeneous space G/Q

(cf. § 4). If the Hasse diagram of P is a plane graph, we can define the dual graph B of

the Hasse diagram of P̂ on a sphere S2 = P1 with putting 1̂, 0̂ on ±
√
−1∞ respectively.

We denote by bL, bR the elements b ∈ B corresponding to the farthest left and right areas

respectively. We draw the Hasse diagram of P̂ and its dual graph B below, Figure 3.3.1,

for the minuscule poset of G(2, 6) as an example (cf. § 4).

bL

bRb3

b2

b1 0
m

mb1

mb2

mb3

←→

P̂ B

Figure 3.3.1: An example of P̂ and the dual graph B

The orientation of an edge e of B is defined as the direction from the left l(e) to the

right r(e). We attain the variable mb for each element b ∈ B and set mbL = 0 and mbR = m.

Proposition 3.3.1. Let X be a smooth Calabi–Yau variety of Picard number one degenerating

to a general complete intersection X0 in a Gorenstein Hibi toric variety P∆(P) with a finite

connected pure poset P. Assume that the Hasse diagram of P is a plane graph. Then, the

fundamental period ω0(x) for the conjectural mirror family of X is presented in the following:

ω0(x) =
∞∑

m=0

∏r
j=1(d jm)!

m!hP

∑
mb∈B

∏
e∈E(B)

mr(e)

ml(e)

 xm. (3.3.1)

3.4 Assumptions from mirror symmetry

We prepare some further definitions related with the monodromy calculations of a

Picard–Fuchs operatorDx in one variable x which has two maximally unipotent mon-

odromy (MUM) point at x = 0 and x = ∞. Assume that there exist smooth Calabi–Yau

3-folds X and Z in the mirror side associated with the MUM points x = 0,∞, respec-

tively.
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Recall the argument in [CdOGP] based on the mirror symmetry, which involves

an integral symplectic basis of solutions in the original Calabi–Yau geometry. Let us

start from the Frobenius basis of solutions for Dx around x = 0, namely the unique

normalized regular power series solutions ω0(x) = 1 +O(x) and the followings

ω1(x) = ω0(x) log x + ωreg
1 (x),

ω2(x) = ω0(x)(log x)2 + 2ωreg
1 (x) log x + ωreg

2 (x),

ω3(x) = ω0(x)(log x)3 + 3ωreg
1 (x)(log x)2 + 3ωreg

2 (x) log x + ωreg
3 (x),

(3.4.1)

where ωreg
k (x) is a regular power series around x = 0 without constant term. We expect

an integral symplectic basis has the following form:

ΠX(x) =
( 1 0 0 0

0 1 0 0
β/24 a -κ/2 0
γ β/24 0 κ/6

)  n0ω0(x)
n1ω1(x)
n2ω2(x)
n3ω3(x)

 , (3.4.2)

where κ = −deg(X), β = −c2(X) · H, γ = −n3ζ(3)χ(X), nk = 1/(2πi)k with the topo-

logical invariants of X (cf. § 4.6), and a is an unknown parameter without geometric

interpretation although it may be consistent to choose a ∈ deg(X)/2 +Z.

Around x = ∞, we also expect the existence of similar basis zρΠZ(z) of solutions

for Dz under some appropriate coordinate change z = c/x, where ρ is the index of

the singularity at x = ∞ of Dx. We denote by ΠZ(z) the gauge fixed basis, exactly the

same form as ΠX(x) with the Frobenius basis ωZ
k (z) forDZ

z := zρDc/zz−ρ and topological

invariants deg(Z), c2(Z) ·H, χ(Z) and an unknown parameter aZ.
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4
Complete Intersections in Minuscule Schubert

Varieties

In this chapter, we study complete intersection Calabi–Yau 3-folds in minuscule Schu-

bert varieties including a new example Σ(19).

From Section 4.1 to Section 4.4 are devoted to give preliminaries for the combinato-

rial notion of minuscule posets and the geometry of minuscule Schubert varieties.

In Section 4.5, we make a list of all the deformation equivalent (diffeomorphic)

classes of smooth complete intersection Calabi–Yau 3-folds in minuscule Schubert vari-

eties. We will see that there is a unique nontrivial example of such Calabi–Yau 3-folds,

Σ(19) embedded in a locally factorial Schubert variety Σ in the Cayley plane OP2.

In Section 4.6, we give a computational method of calculating topological invariants

for a smooth Calabi–Yau 3-folds of Picard number one degenerating to a general com-

plete intersection in a Gorenstein Hibi toric variety. We work on Σ(19) as an example.

The topological Euler number is computed by using a conifold transition.

In Section 4.7, we study the mirror symmetry of Σ(19) using the results and the

assumptions in Chapter 3. We obtain the Picard–Fuchs operator Dx, which suggests

the existence of a non-trivial Fourier–Mukai partner of X (Conjecture 4.7.2). We also

perform the monodromy calculation. Every result seems very similar to that happened

for the examples of the Pfaffian-Grassmannian [Rød] [HK] and the Reye congluence

Calabi–Yau 3-fold [HT1, HT2].
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4.1 Definitions

First of all, let us define a minuscule weight, a minuscule homogeneous space and

minuscule Schubert varieties (Definition 4.1.1). Let G be a simply connected simple

complex algebraic group, B a Borel subgroup and T a maximal torus in B. We denote

by R+ the set of positive roots and by S = {α1, . . . , αn} the set of simple roots. Let W

be the Weyl group of G. Denote by Λ the character group of T, also called the weight

lattice of G. The weight lattice Λ is generated by the fundamental weights λ1, . . . , λn

defined by (α∨i , λ j) = δi j for 1 ≤ i, j ≤ n, where (, ) is a W-invariant inner product and

α∨ := 2α/(α, α). An integral weight λ =
∑

niλi ∈ Λ is said to be dominant if ni ≥ 0 for

all i = 1, . . . , n. For an integral dominant weight λ ∈ Λ, we denote by Vλ the irreducible

G-module of the highest weight λ. The associated homogeneous space G/Q of λ is

the G-orbit of the highest weight vector in the projective space P(Vλ), where Q ⊃ B is

the associated parabolic subgroup of G. A Schubert variety in G/Q is the closure of a

B-orbit in G/Q.

Definition 4.1.1 (cf. [LMS, Definition 2.1]). Let λ ∈ Λ be a fundamental weight. We call

λ minuscule if it satisfies the following equivalent conditions.

(1) Every weight of Vλ is in the orbit Wλ ⊂ Λ.

(2) (α∨, λ) ≤ 1 for all α ∈ R+.

The homogeneous space G/Q associated with a minuscule weight λ is said to be

minuscule. The Schubert varieties in minuscule G/Q are also called minuscule.

4.2 Minuscule homogeneous spaces

We give some further notations and recall the classification of minuscule homogeneous

spaces (Table 4.2.1). A parabolic subgroup Q ⊃ B is determined by a subset SQ of S

associated with negative root subgroups. A useful notation for a homogeneous space

G/Q is to cross the nodes in the Dynkin diagram which correspond to the simple roots

in S \ SQ. With this notation, the minuscule homogeneous spaces are as shown in

Table 4.2.1. This contains the Grassmannians G(k,n), the orthogonal Grassmannians

OG(n, 2n), even dimensional quadrics Q2n and, finally, the Cayley plane OP2 = E6/Q1

and the Freudenthal variety E7/Q7, where we use the Bourbaki labelling for the roots.

We omit two kinds of minuscule weights for groups of type B and type C, since they

give the isomorphic varieties to those for simply laced groups.
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G(k,n + 1) OG(n, 2n) Q2n−2 OP2 E7/Q7

×
k

× × × ×

Table 4.2.1: Minuscule homogeneous spaces

4.3 Minuscule posets

The Weyl group W is generated by simple reflections sα ∈W for α ∈ S. These generators

define the length function l on W. Let us denote by WQ the Weyl group of Q, i.e. the

subgroup generated by {sα ∈ W | α ∈ SQ}, and by WQ the set of minimal length

representatives of the coset W/WQ in W. For any w ∈WQ, we denote by X(w) = BwQ/Q

the Schubert variety in G/Q associated with w, which is a l(w)-dimensional normal

Cohen–Macaulay projective variety with at worst rational singularities. There is a

natural partial order ≺ on WQ called the Bruhat order, defined as w1 ≼ w2 ⇔ X(w1) ⊂
X(w2). We recall the following fundamental fact for minuscule homogeneous spaces.

Proposition 4.3.1 ([Pro, Proposition V.2]). For a minuscule homogeneous space G/Q, the

poset WQ is a finite distributive lattice.

From Proposition 4.3.1 and the Birkhoff representation theorem, Theorem 1.2.2, we

can define the minuscule poset PQ for a minuscule G/Q such that J(PQ) =WQ as in [Pro].

Moreover, the order ideal Pw ⊂ PQ associated with w ∈ WQ is called the minuscule

poset for the minuscule Schubert variety X(w) ⊂ G/Q. For example, the order ideals

PQ, ∅ ⊂ PQ turn out to be the minuscule posets for the total space X(wQ) = G/Q and

the B-fixed point X(id) = Q/Q, respectively, where wQ is the unique longest element

in WQ. The minuscule poset for minuscule Schubert varieties is a generalization of the

Young diagram for Grassmann Schubert varieties.

Example 4.3.2. An easy method to compute the Hasse diagram of WQ to trace out the

W-orbit of certain dominant weight whose stabilizer coincides with WQ (cf. [BE, §4.3]).

Denote by (i j · · · k) the element w = sαisα j · · · sαk ∈ W, where sα is simple reflection with

respect to α ∈ S. The initial part of the Hasse diagram of WQ for the Cayley plane OP2

is the following
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id (1) (31) (431)
(5431)
(2431)

(65431)
(25431)

(265431)
(425431)

(4265431) · · ·
(3425431) · · · ,

where the right covers the left for connected two elements with respect to the Bruhat

order. Thus we obtain the Hasse diagram of the distributive lattice WQ and hence the

minuscule poset for every Schubert variety in OP2.

Definition 4.3.3. In the above notations, let us set w = (345134265431) ∈ WQ. We

denote by Σ the associated 12-dimensional Schubert variety X(w) in the Cayley plane

OP2 corresponding to the minuscule poset P in Figure 1.2.1.

Remark 4.3.4. We remark on another geometric characterization of minuscule homoge-

neous spaces in [LMS, Definition 2.1]. A fundamental weightλ is minuscule (Definition

4.1.1) if and only if the following condition holds.

(3) For the associated homogeneous space G/Q, the Chevalley formula

[H] · [X(w)] =
∑

w covers w′
[X(w′)] (4.3.1)

holds for all w ∈ WQ in the Chow ring of G/Q, where H is the unique Schubert

divisor in G/Q and WQ is the poset with the Bruhat order.

As a corollary, it turns out that the degree of a minuscule Schubert variety X(w) with

respect to OG/Q(1)|X(w) equals the number of maximal chains in J(Pw). For example, we

obtain degΣ = 33 by counting the maximal chains in J(P) in Figure 1.2.1.

4.4 Singularities

We introduce further definitions to describe singularities of minuscule Schubert vari-

eties. As we expect from the computation in Example 4.3.2, the Bruhat order on WQ is

generated by simple reflections for minuscule G/Q [LW, Lemma 1.14], that is,

w1 covers w2 ⇔ w1 = sα · w2 and l(w1) = l(w2) + 1 for some α ∈ S.

From this fact, a join irreducible element u ∈WQ covers the unique element sβQ(u)·u ∈WQ

where βQ(u) ∈ S. Thus we can define the natural coloration βQ : PQ → S for a minuscule

poset PQ by simple roots S. We also define the coloration βw on each minuscule

poset Pw ⊂ PQ by restricting βQ on Pw. The minuscule poset Pw with the coloration

22



βw : Pw → S has in fact the same information as the minuscule quiver introduced by

Perrin [Per1, Per2], which gives a good description of geometric properties of minuscule

Schubert varieties X(w). Now we translate the combinatorial notions and useful facts on

singularities of minuscule Schubert varieties X(w) from [Per1, Per2] in our terminology.

Definition 4.4.1. Let P be a minuscule poset with the coloration β : P→ S.

(1) A peak of P is a maximal element u in P.

(2) A hole of P is a maximal element u in β−1(α) for some α ∈ S such that there are

exactly two elements v1, v2 ∈ P with u ≺ vi and (β(u)∨, β(vi)) , 0 (i = 1, 2).

Let us denote by Peaks(P) and Holes(P) the set of peaks and holes of P, respectively. A

hole u of the poset P is said to be essential if the order ideal Pu := {v ∈ P | v % u} contains

all other holes in P.

Let X(w) be a minuscule Schubert variety in G/Q and Pw the associated minuscule

poset. Weil and Cartier divisors on X(w) are described in terms of the poset Pw. In fact,

it is clear that any Schubert divisor coincides with a Schubert variety Du associated with

Pu
w for some u ∈ Peaks(Pw). It is well-known that the divisor class group Cl(X(w)) is the

free Z-module generated by the classes of the Schubert divisors Du for u ∈ Peaks(Pw),

and the Picard group Pic(X(w)) is isomorphic to Z generated by OG/Q(1)|X(w). As we

saw in Remark 4.3.4, the Cartier divisor corresponding to OG/Q(1)|X(w) is∑
u∈Peaks(Pw)

Du. (4.4.1)

Proposition 4.4.2 ([Per1, Per2]). Let X(w) be a minuscule Schubert variety and Pw the

associated minuscule poset.

(1) [Per1, Proposition 4.17] An anticanonical Weil divisor of X(w) is

−KX(w) =
∑

u∈Peaks(Pw)

(h(u) + 1)Du. (4.4.2)

In particular, X(w) is Gorenstein if and only if Pw is pure. In this case X(w) is a Fano

variety of index hPw .

(2) [Per2, Theorem 2.7 (1)] The Schubert subvariety associated with the order ideal Pu
w ⊂ Pw

for an essential hole u of Pw is an irreducible component of the singular loci of X(w). All

the irreducible components of the singular loci are obtained in this way.

23



We apply Proposition 4.4.2 to our example Σ ⊂ OP2 and obtain the following.

Proposition 4.4.3. Let Σ be the minuscule Schubert variety in OP2 (Definition 4.3.3).

(1) Σ is a locally factorial Gorenstein Fano variety of index 9.

(2) The singular locus of Σ is isomorphic to P5.

Proof. The former holds because the corresponding minuscule poset P (Figure 1.2.1) is

pure with hP = 9 and the unique peak. From the computation of the Hasse diagram of

WQ of OP2 in Example 4.3.2, the coloration β : P→ S is given as the following picture.

β

u⊂
Pu P

Figure 4.4.1: The coloration of the minuscule poset P and the singular locus

A unique (essential) hole of P is the circled vertex u, whose color is α2 ∈ S. The

corresponding Schubert subvariety is described by the minuscule poset Pu, which

coincides with the singular locus of Σ by Proposition 4.4.2. It is isomorphic to P5

because the degree equals to one. �

We record the useful vanishing theorems for minuscule Schubert varieties.

Theorem 4.4.4 ([LMS, Theorem 7.1]). Let λ be a minuscule weight, G/Q ⊂ P(Vλ) the

associated homogeneous space and X(w) ⊂ G/Q a minuscule Schubert variety.

(1) H0(P(Vλ),O(m))→ H0(X(w),O(m)) is surjective for all m ≥ 0,

(2) Hi(X(w),O(m)) = 0 for all m ∈ Z and 0 < i < l(w),

(3) Hl(w)(X(w),O(m)) = 0 for all m ≥ 0.

4.5 List of complete intersection Calabi–Yau 3-folds

Now we study the smooth complete intersection Calabi–Yau 3-folds in minuscule

Schubert varieties. We show that there is a unique new deformation equivalent class
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of such Calabi–Yau 3-folds, that is, the complete intersection of nine hyperplanes in a

locally factorial Schubert variety Σ in Definition 4.3.3.

First we fix some basic terminologies to clarify the meaning of our list. Let X(w) be

a minuscule Schubert variety. We call a subvariety X ⊂ X(w) a complete intersection if it

is the common zero locus of r = codimX global sections of invertible sheaves on X(w).

We may denote by X = X(w)(d1, . . . , dr) the complete intersection variety of general r

sections of degree d1, . . . , dr with respect toOG/Q(1)|X(w) since Pic X(w) ≃ Z. A Calabi–Yau

variety X is a normal projective variety with at worst Gorenstein canonical singularities

and with trivial canonical bundle KX ≃ 0 such that Hi(X,OX) = 0 for all 0 < i < dim X.

Two smooth varieties X1 and X2 are called deformation equivalent if there exist a smooth

family X → U over a connected open base U ⊂ C such that Xt1 ≃ X1 and Xt2 ≃ X2 for

some t1, t2 ∈ U. In this case, X1 and X2 turn out to be diffeomorphic.

We summarize all possible smooth complete intersection Calabi–Yau 3-folds in

minuscule Schubert varieties:

Proposition 4.5.1. A smooth complete intersection Calabi–Yau 3-fold in a minuscule Schubert

variety is one of that listed in the following table up to deformation equivalences.

minuscule posets

k×(n−k)

ambient varieties G(k,n) OG(5, 10) Σ

degrees 10 examples (16, 2) (19)

In this table, 10 known examples in Grassmannians of type A include five in projective spaces;

P4(5), P5(2, 4), P5(32), P6(22, 3) and P7(24),

and five in others, whose mirror symmetry was discussed in [BCFKvS1];

G(2, 5)(12, 3), G(2, 5)(1, 22), G(2, 6)(14, 2), G(3, 6)(16) and G(2, 7)(17).

For all these Calabi–Yau 3-folds, the Picard number equals to one.

Proof. We may assume that the ambient minuscule Schubert variety is Gorenstein. In

fact, from the adjunction formula and the Grothendieck–Lefschetz theorem for divisor

class groups of normal projective varieties [RS], we have an explicit formula of the
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canonical divisor as a Cartier divisor, KX(w) = −D1 − · · · −Dr where D j ⊂ X(w) is a very

ample Cartier divisor of degree d j and X(w)(d1, . . . , dr) is a general Calabi–Yau complete

intersection.

Let P∗ = P ∪
{
1̂
}
, P∗ = P ∪

{
0̂
}

be the posets with the partial orders extended from

a finite poset P by u ≺ 1̂, 0̂ ≺ u for all u ∈ P, respectively (cf. Example 1.2.3). From

Corollary 1.3.5, d-times iterated extension P∗···∗∗···∗ corresponds to d-times iterated projec-

tive cones over P∆(P). Let X(w), X(w′) be minuscule Schubert varieties and Pw, Pw′

the corresponding minuscule posets, respectively. Assume that Pw′ coincides with a

d-times iterated extension (Pw)∗···∗∗···∗ of Pw. It holds that P∆(Pw) is isomorphic to a complete

intersection of d general hyperplanes in P∆(Pw′ ). By Theorem 2.3.2, there exist toric de-

generations of X(w) and X(w′) to the Hibi toric varieties P∆(Pw) and P∆(Pw′ ), respectively.

This means that general complete intersection Calabi–Yau 3-folds X = X(w)(d1, . . . , dr)

and X′ = X(w′)(1d, d1, . . . , dr) can be connected by flat deformations through a complete

intersection X0 = P∆(Pw)(d1, . . . , dr). Since X0 has at worst terminal singularities, the

Kuranishi space is smooth by [Nam, Theorem A] and the degenerating loci have a pos-

itive complex codimension. Therefore X and X′ are connected by smooth deformation.

Thus we eliminate redundancy arisen from iterated extensions of minuscule posets.

A Gorenstein minuscule Schubert variety X(w) with minuscule poset P = Pw is

a |P|-dimensional Fano variety of index hP as we saw in Proposition 4.4.2 (1). The

condition for general complete intersections in X(w) to be Calabi–Yau 3-folds gives a

strong combinatorial restriction for the poset P as follows,

hP − 1 ≤ |P| ≤ hP + 3. (4.5.1)

On the other hand, there is a complete list of the minuscule posets in [Per1]. Hence

we can make a list of the complete intersection Calabi–Yau 3-folds by counting such

posets.

We check that the resulting 3-folds X ⊂ X(w) with trivial canonical bundles turn

out to be Calabi–Yau varieties after some computation using the vanishing theorems

for X(w), Theorem 4.4.4. We verify the smoothness of these 3-folds by looking at the

codimension of the singular loci of X(w) using Proposition 4.4.2 (2). For example, a

general linear section X = Σ(19) is smooth since the singular loci of Σ have codimension

7 as we saw in Proposition 4.4.3. All the smooth cases are contained in locally factorial

minuscule Schubert varieties, i.e., the minuscule poset P has the unique peak. Thus the

Picard number equals to one again by the Grothendieck–Lefschetz theorem for divisor

class groups [RS]. This completes the proof. �
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4.6 Topological invariants

Now we explain our calculation of topological invariants valid for a smooth Calabi–Yau

3-fold of Picard number one degenerating to a general complete intersection Calabi–

Yau 3-fold in a Gorenstein Hibi toric variety by taking X = Σ(19) as an example. The

topological invariants mean the degree deg(X) =
∫

X
H3, the linear form associated with

the second Chern class c2(X) · H =
∫

X
c2(X) ∪ H and the topological Euler number

χ(X) =
∫

X
c3(X), where H is the ample generator of Pic(X) ≃ Z. These three invariants

characterize the diffeomorphic class of smooth simply connected Calabi–Yau 3-folds of

Picard number one [Wal].

Proposition 4.6.1. The topological invariants of X = Σ(19) are

deg(X) = 33, c2(X) ·H = 78, χ(X) = −102.

Proof. The degree of X coincides with that of the minuscule Schubert variety Σ ⊂ OP2

since the ample generator OΣ(1) of PicΣ is the restriction of OOP2(1) and X is a linear

section. We obtain deg(Σ) = 33 by using the Chevalley formula of OP2 as we already

saw in Remark 4.3.4.

The Schubert variety V0 := Σ and its general complete intersections V j := Σ(1 j) have

at worst rational singularities. Hence the Kawamata–Viehweg vanishing theorem gives

Hi(V j, ωV j ⊗ OV j(k)) = Hi(V j,OV j(k + j − 9)) = 0 for all i > 0 and k > 0. (4.6.1)

Together with the long cohomology exact sequences of

0→ OV j(k)→ OV j(k + 1)→ OV j+1(k + 1)→ 0,

the holomorphic Euler number of X = V9 becomes

χ(X,OX(1)) = dim H0(X,OX(1)) = dim H0(Σ,OΣ(1)) − 9 = |J(P)| − 9 = 12. (4.6.2)

On the other hand, it holds that

χ(X,OX(1)) =
1
6

deg(X) +
1

12
c2(X) ·H

from the Hirzebruch–Riemann–Roch theorem of the smooth Calabi–Yau 3-fold X. Thus

we obtain c2(X) ·H = 78.

For the topological Euler number χ(X), we use the toric degeneration of Σ to the

Hibi toric variety P∆(P), Theorem 2.3.2. Recall that we have a conifold transition Y
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of X passing through a general complete intersection Calabi–Yau 3-fold X0 in the

degenerated variety P∆(P) and a MPCP resolution P̂∆(P) of P∆(P) (cf. § 3.2). By Theorem

3.1.1, the Hodge numbers of Y can be calculated as h1,1(Y) = 5 and

h2,1(Y) = 9 (|J(P)| − 9) −
∑
e∈E

(l∗(9θe) − 9l∗(8θe)) − |P|

= 96 −
∑
e∈E

(l∗(9θe) − 9l∗(8θe)).
(4.6.3)

To count the number of interior integral points in each facet, we use Proposition 1.4.3

which states a face of the order polytope is also the order polytope of some poset P′.

For each facet θe, the corresponding poset P′ (or P̂′) is easily obtained by replacing an

inequality xs(e) ≥ xt(e) by the equality xs(e) = xt(e), and by considering the induced partial

order. The Hasse diagram of resulting posets P′ are shown in the following table, where

the numbering of edges is chosen from the upper left in a picture of the Hasse diagram

of P̂ in Figure 1.2.1.

facets
θ1 θ2 θ3, θ6 θ4 θ5 θ7, θ10 θ8 θ9 θ11 θ12, θ14 θ13 θ15, θ16, θ17

l∗(8θi) 1 - - - - - - - - - - 1

l∗(9θi) 20 3 1 2 - 1 - 2 - 1 2 20

As shown in this table, some posets P′ are pure and others are not pure. For a pure

poset P′, the face θe ≃ ∆(P′) is unimodular equivalent to a reflexive polytope (cf. § 1.6).

Then we know l∗(hP′θe) = 1 and l∗((hP′ + 1)θe) = |J(P′)|. When P′ is not pure, we can also

easily obtain the number l∗(kθe) by counting the points satisfying the inequalities of the

polytope kθe ≃ k∆(P′) strictly. For example, 9θ2 contains three internal integral points

corresponding to

0
x11

x10
x9

x7 x8
x6

x4
x2

x1
9

x3x5 =

01234 4
56

78
9

65 ,

01234 4
56

78
9

75 and

01234 4
56

78
9

76

From the table, we get h2,1(Y) = 37, hence χ(Y) = 2(h1,1(Y) − h2,1(Y)) = −64.

Let us recall that the conifold transition is a surgery of Calabi–Yau 3-folds replacing

finite vanishing S3 by the same number of exceptional P1 ≃ S2 as in [Cle]. From the
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inclusion-exclusion principle of the Euler numbers, χ(X) and χ(Y) are related with each

other as:

χ(X) = χ(Y) − 2p, (4.6.4)

where p is the number of nodes on X0. Then we need to know the total degree of

codimension three singular loci of P∆(P), which equals the number p/
∏

j d j = p in our

case. From Proposition 1.5.1 (2), an irreducible component of singular loci of the Hibi

toric variety P∆(P) corresponds to a minimal convex cycle in P̂. There are four such

cycles (or boxes) b1, · · · , b4 and all of them define the codimension three faces in ∆(P) as

in Proposition 1.4.3. Again we can compute the corresponding index poset P′ of them

by the method used above. The resulting posets P′ are summarized as follows.

singular loci
b1 b2 b3 b4

degree 5 3 2 9

From Proposition 1.5.1 (3), we can compute the degree of each irreducible component

of singular loci by counting the maximal chains in J(P′). Then we obtain that total

degree p, that is, the number of nodes on X0 is 19. We conclude χ(X) = −102. �

Remark 4.6.2. 1. The existence of the Calabi–Yau 3-fold with these topological in-

variants were previously conjectured by [vEvS] from the monodromy calculations

of Calabi–Yau differential equations. We also perform the similar calculation in

the next section.

2. It may be possible to calculate the topological Euler number χ(X) in another

way, by computing the Chern–Mather class of the Schubert variety Σ. For the

Grassmann Schubert varieties, this is done by [Jon] using Zelevinsky’s IH-small

resolution. In our case, however, it is known that Σ does not admit any IH-small

resolution [Per1].

4.7 Mirror symmetry for Σ(19)

From Theorem 2.3.2, we have a toric degeneration of Σ to the Hibi toric variety P∆(P)

where P is the minuscule poset for Σ. Thus we can use all the results in § 3 based on

the conjectural mirror construction via conifold transition.

The fundamental period of the conjectural mirror family of X can be read from the

following diagram.
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s
t

u0 m
v

The vertices of the dual graph B corresponds to the separated areas. The fundamental

period turns out to be

ω0(x) =
∑

m,s,t,u,v

m

s


2 m

v


2 m

t


s

t


 t

u


v

u

 xm, (4.7.1)

where x = a9. With the aid of numerical method, we obtain the Picard–Fuchs equation

for the conjectural mirror family of X.

Proposition 4.7.1. Let ω0(x) be the above power series around x = 0, which corresponds to the

fundamental period for the conjectural mirror family of the Calabi–Yau 3-fold X = Σ(19). This

satisfies the Picard–Fuchs equationDxω0(x) = 0 with θx = x∂x and

Dx =121θ4
x − 77x(130θ4

x + 266θ3
x + 210θ2

x + 77θx + 11)

− x2(32126θ4
x + 89990θ3

x + 103725θ2
x + 55253θx + 11198)

− x3(28723θ4
x + 74184θ3

x + 63474θ2
x + 20625θx + 1716)

− 7x4(1135θ4
x + 2336θ3

x + 1881θ2
x + 713θx + 110) − 49x5(θx + 1)4.

The Riemann scheme of the differential operatorDx is
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ζ1 −11/7 ζ2 0 ζ3 ∞
0 0 0 0 0 1

1 1 1 0 1 1

1 3 1 0 1 1

2 4 2 0 2 1


,

where ζ1 < ζ2 < ζ3 are the roots of the discriminant x3+159x2+84x−1. The singularities

at x = ζ1, ζ2, ζ3 are called conifold and there is no monodromy around the point

x = −11/7, called an apparent singularity.

We expect that the MUM point at x = ∞ also have a geometric interpretation and

assume all the assumptions in § 3.4. Once passing to a numerical calculation, we obtain

the following results.

1. There exists the integral symplectic basis ΠX(x) and zΠZ(z) with the parameters,

a = −1/2, c = −1, deg(Z) = 21, c2(Z) ·H = 66, χ(Z) = −102, aZ = −1/2.
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2. The analytic continuation along a path in the upper half plane gives the following

relation of two basis ΠX(x) and zΠZ(z),

ΠX(x) = NzSxzzΠZ(z),

with Nz = 1 and the symplectic matrix Sxz =

(
8 4 2 5
4 0 1 2
10 -25 2 -1
-21 2 -5 -10

)
.

3. With respect to the local basis of the analytic continuation of ΠX(x) and zΠZ(z)

along a path in the upper half plane, the monodromy matrices MX
p and MZ

p at each

singular point x = −1
z = ζ1, ζ2, 0, ζ3,∞ have the following form, respectively:

MX
p

(
169 -80 32 64
84 -39 16 32
210 -100 41 80
-441 210 -84 -167

) (
13 -8 2 4
6 -3 1 2
24 -16 5 8
-36 24 -6 -11

) (
1 0 0 0
1 1 0 0
16 33 1 0
-12 -17 -1 1

) (
1 0 0 1
0 1 0 0
0 0 1 0
0 0 0 1

) (
286 -130 55 111
89 -43 17 34

-307 127 -60 -122
-465 218 -89 -179

)
MZ

p

(
1 0 0 1
0 1 0 0
0 0 1 0
0 0 0 1

) (
1 3 0 1
0 1 0 0
0 -9 1 -3
0 0 0 1

) (
343 -17 83 168
104 -9 25 50
-496 8 -121 -247
-432 32 -104 -209

) (
211 -20 50 100
105 -9 25 50
42 -4 11 20

-441 42 -105 -209

) (
1 0 0 0
1 1 0 0
10 21 1 0
-9 -11 -1 1

)

Table 4.7.1: Monodromy matrices

All in the above results strongly indicate the existence of the geometric interpretation

at x = ∞. Thus we are led to the following conjecture based on the homological mirror

symmetry similar to the examples of the Grassmannian–Pfaffian in [Rød] and the Reye

congluence Calabi–Yau 3-fold in [HT1].

Conjecture 4.7.2. There exists a smooth Calabi–Yau 3-fold Z whose derived category of coherent

sheaves is equivalent to that of X = Σ(19). The topological invariants of Z are

deg(Z) = 21, c2(Z).H = 66, χ(Z) = −102, h1,1(Z) = 1, h2,1(Z) = 52,

where H is the ample generator of the Picard group Pic(Z) ≃ Z.

The Calabi–Yau 3-fold Z in Conjecture 4.7.2 can not be birational to X because h1,1 = 1

and deg(Z) , deg(X), so that it should be a non-trivial Fourier–Mukai partner of X.

31



5
Complete Intersections of Grassmannians

In this chapter, we study the mirror symmetry for an example (G(2, 5)2).

5.1 Complete intersection of projective varieties

We use the word complete intersection in a generalized sense as follows.

Definition 5.1.1. A projective variety X ⊂ PN is called a complete intersection of

projective varieties V1, . . . ,Vr if X = V1 ∩ · · · ∩ Vr as a scheme for some simultaneous

embeddings V1, . . . ,Vr ⊂ PN and codim X = codim V1 + · · · + codim Vr. We denote by

(V1, . . . ,Vr) a general complete intersection of V1, . . . ,Vr.

We explain an idea of regarding any complete intersection variety in this sense

as a complete intersection of hyperplanes in another high dimensional variety. Let

V1 ⊂ Pn
1 and V2 ⊂ Pn

2 be projective varieties in n-dimensional projective subspaces

Pn
1 ,P

n
2 ⊂ P2n+1 with general positions. A choice of an additional general projective

subspace Pn ⊂ P2n+1 gives an identification Pn
1 ≃ Pn

2 by regarding it as a graph of the

isomorphism. Therefore a complete intersection variety of V1 and V2 in Pn coincides

with a complete intersection of a projective subspacePn and the projective join J(V1,V2)

in P2n+1. In particular, we have (V1,V2) ≃ J(V1,V2)(1n+1). Of course, the story can be

generalized for complete intersections of r > 2 varieties by defining the projective join

of r varieties as J(V1,V2, . . . ,Vr) := J(V1, J(V2, . . . ,Vr)).

Example 5.1.2. A general complete intersection of two Grassmannians G(2, 5) ⊂ P9 is a

smooth Calabi–Yau 3-fold of Picard number one [Kan]. We denote by X = (G(2, 5))2) :=

(G(2, 5),G(2, 5)) ≃ J(G(2, 5),G(2, 5))(110) in this section. The topological invariants of X

are obtained by [Kan] as

deg X = 25, c2(X) ·H = 70, χ(X) = −100,
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where H is the ample generator of the Picard group Pic X ≃ Z.

5.2 Mirror symmetry for (G(2, 5)2)

We have a toric degeneration of Grassmannians G(2, 5) to the Hibi toric variety P(2, 5) =

P∆(P) [BCFKvS1] (Theorem 2.3.2), where the Hasse diagram of the poset P is shaped like

a rectangle. From Corollary 2.3.3, we obtain a toric degeneration of J(G(2, 5),G(2, 5)) ⊂
P19 to the Hibi toric variety P∆(J(P,P)). The Hasse diagram of the projective join J(P,P) is

depicted in Figure 1.3.1. Thus we can use all the results in § 3 based on the conjectural

mirror construction via conifold transition.

Remark 5.2.1. The Calabi–Yau 3-fold X = (G(2, 5)2) also degenerates to a complete

intersection X0 = P∆(J(P,P))(110) which has 5 + 5 + 5 + 5 = 20 nodes. Of course, we can

recover the topological invariants for X in Example 5.1.2 using the procedure in § 4.6.

The fundamental period of the conjectural mirror family of X can be read from the

diagram in Figure 1.3.1 and turns out to be

ω0(x) =
∑

m,s,t,u,v

m

s


m

t


2 t

s


m

u


m

v


2 v

u

 xm

=
∑

m


∑

s,t

m

s


m

t


2 t

s




2

xm.

(5.2.1)

where x = a10. From this power series expansion, we obtain the Picard–Fuchs equation

for the conjectural mirror family of X.

Proposition 5.2.2. Let ω0(x) be the above power series around x = 0, which corresponds to the

fundamental period for the conjectural mirror family of the Calabi–Yau 3-fold X = (G(2, 5)2).

This satisfies the Picard–Fuchs equationDxω0(x) = 0 with θx = x∂x and

Dx =θ
4
x − x(124θ4

x + 242θ3
x + 187θ2

x + 66θx + 9)+

+ x2(123θ4
x − 246θ3

x − 787θ2
x − 554θx − 124)+

+ x3(123θ4
x + 738θ3

x + 689θ2
x + 210θx + 12)−

− x4(124θ4
x + 254θ3

x + 205θ2
x + 78θx + 12) + x5(θx + 1)4.
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The Riemann scheme of the differential operatorDx is

P



−1 0 ζ1 1 ζ2 ∞
0 0 0 0 0 1

1 0 1 1 1 1

1 0 1 3 1 1

2 0 2 4 2 1


,

where ζ1 < ζ2 are the roots of the discriminant x2 − 123x + 1. The singularities at

x = −1, ζ1, ζ2 are called conifold (although −1 is slightly different from the latter two,

conjecturally the point where a lens space S3/Z2 vanishes), and the point x = 1 is an

apparent singularity.

The MUM point at x = ∞ seems to correspond to the same geometry as around x = 0

because of the operator identity zD1/zz−1 = Dz. We may assume all the assumptions in

§ 3.4 together with Z = X = (G(2, 5)2). Then we obtain the following results.

1. There exists the integral symplectic basis ΠX(x) and zΠX(z) with the parameters,

a = −1/2, c = 1.

2. The analytic continuation along a path in the upper half plane gives the following

relation of two basis ΠX(x) and zΠX(z),

ΠX(x) = NzSxzzΠX(z),

with Nz = 1 and the symplectic matrix Sxz =

(
-4 7 -1 4
0 4 0 1
15 0 4 -8
0 -15 0 -4

)
.

3. With respect to the local basis of the analytic continuation of ΠX(x) and zΠX(z)

along a path in the upper half plane, the monodromy matrices MX
p at each singular

point x = 1
z = −1, 0, ζ1, ζ2,∞ have the following form:

MX
p

(
21 -8 4 8
10 -3 2 4
20 -8 5 8
-50 20 -10 -19

) (
1 0 0 0
1 1 0 0

12 25 1 0
-10 -13 -1 1

) (
1 0 0 1
0 1 0 0
0 0 1 0
0 0 0 1

) (
1 60 0 16
0 1 0 0
0 -225 1 -60
0 0 0 1

) (
-19 248 -4 75
9 -93 2 -29

-17 -118 -5 -23
-40 383 -9 121

)

Table 5.2.1: Monodromy matrices

Let V ⊂ Pn be a smooth projective variety of Picard number one. In [BCFKvS1], the

authors introduce the A-series AV(q) of V as a holomorphic power series solution of
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the quantum cohomology D-module of V. Let X = V(d1, . . . , dr) ⊂ Pn be a Calabi–Yau

complete intersection of V and general hypersurfaces in Pn of degree d j ( j = 1, . . . , r).

They say that the Trick with Factorials works for X if the fundamental period ω0(x) of the

mirror family X∗ is written as

ω0(x) =
∞∑

m=0

aV
m(md1)! · · · (mdr)!xm, (5.2.2)

where AV =
∑∞

m=0 aV
mqm. The Trick with Factorials is a special version of the quantum

hyperplane section theorem [Kim].

It seems natural to generalize their definition as follows:

Definition 5.2.3. Let V1, · · · ,Vr ⊂ Pn be smooth Fano manifolds of Picard number

one and X = (V1, · · · ,Vr) ⊂ Pn be a general Calabi–Yau complete intersection of Fano

manifolds V j ( j = 1, . . . , r). We say that the Trick with Factorials works for X if the

fundamental period ω0(x) of the mirror family X∗ is written as

ω0(x) =
∞∑

m=0

aV1
m · · · aVr

m xm, (5.2.3)

where AV j =
∑∞

m=0 aV j
m qm ( j = 1, . . . , r).

From the formula (5.2.1) of the fundamental period, we expect the following.

Conjecture 5.2.4. The Trick with Factorials works for (G(2, 5)2).
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A
BPS numbers

As a further consistency check in Conjecture 4.7.2 or an application of the mirror

construction, we carry out the computation of BPS numbers by using the methods

proposed by [CdOGP] [BCOV1, BCOV2]. The BPS numbers ng(d) are related with the

Gromov–Witten invariants Ng(d) by the following formula [GV],∑
g≥0

Ng(d)λ2g−2 =
∑
k|d

∑
g≥0

ng(d/k)
1
k

(2 sin
kλ
2

)2g−2.

Hence we obtain the prediction for Gromov–Witten invariants from the computations.

We skip all the details and only present results here for X = Σ(19) and its conjectural

Fourier–Mukai partner Z and (G(2, 5)2). For the details, one can get many references

in now. Here we have followed [HK], where a very similar example to ours, the

Grassmannian–Pfaffian Calabi–Yau 3-fold, has been analyzed.
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A.1 BPS numbers for X = Σ(19) and Z

d g = 0 g = 1 g = 2 g = 3 g = 4

1 252 0 0 0 0

2 1854 0 0 0 0

3 27156 0 0 0 0

4 567063 0 0 0 0

5 14514039 4671 0 0 0

6 424256409 1029484 0 0 0

7 13599543618 112256550 5058 0 0

8 466563312360 9161698059 7759089 0 0

9 16861067232735 645270182913 2496748119 151479 0

10 634912711612848 41731465395267 438543955881 418482990 -3708

11 24717672325914858 2557583730349461 56118708041940 217285861284 33975180

Table A.1.1: BPS numbers nX
g (d) of X = Σ(19)

d g = 0 g = 1 g = 2 g = 3 g = 4

1 387 0 0 0 0

2 4671 0 0 0 0

3 124323 1 0 0 0

4 4782996 1854 0 0 0

5 226411803 606294 0 0 0

6 12249769449 117751416 27156 0 0

7 727224033330 17516315259 33487812 252 0

8 46217599569117 2252199216735 15885697536 7759089 0

9 3094575464496057 265984028638047 4690774243470 13680891072 1127008

10 215917815744645750 29788858876065588 1053460470463461 9429360817149 12259161360

Table A.1.2: BPS numbers nZ
g (d) of Z
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A.2 BPS numbers for X = (G(2, 5)2)

d g = 0 g = 1 g = 2 g = 3

1 325 0 0 0

2 3200 0 0 0

3 66250 0 0 0

4 1985000 325 0 0

5 73034875 109822 0 0

6 3070310300 19018900 650 0

7 141603560675 2367994150 1829200 0

8 6990803723200 247337794725 938148600 72650

9 363591194115575 23368078640700 253848387875 287055600

10 19705196405545000 2075562931676048 48865015050900 225293359750

11 1104153966524594850 177059059777938850 7643658178867550 90644383230350

12 63598129792406485600 14692505162221545750 1041954995886347300 25018039373344450

Table A.2.1: BPS numbers nX
g (d) of X = Z = (G(2, 5)2)
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